School of Information and Communication Engineering, North University of China, No.3, College Road, 030051, Taiyuan, Shanxi Province, China.
State Key Laboratory of Dynamic Testing Technology, North University of China, 030051, Taiyuan, China.
J Digit Imaging. 2023 Aug;36(4):1808-1825. doi: 10.1007/s10278-023-00805-0. Epub 2023 Mar 13.
Computed tomography (CT) is an imaging technique extensively used in medical treatment, but too much radiation dose in a CT scan will cause harm to the human body. Decreasing the dose of radiation will result in increased noise and artifacts in the reconstructed image, blurring the internal tissue and edge details. To get high-quality CT images, we present a multi-scale feature fusion network (MSFLNet) for low-dose CT (LDCT) denoising. In our MSFLNet, we combined multiple feature extraction modules, effective noise reduction modules, and fusion modules constructed using the attention mechanism to construct a horizontally connected multi-scale structure as the overall architecture of the network, which is used to construct different levels of feature maps at all scales. We innovatively define a composite loss function composed of pixel-level loss based on MS-SSIM-L1 and edge-based edge loss for LDCT denoising. In short, our approach learns a rich set of features that combine contextual information from multiple scales while maintaining the spatial details of denoised CT images. Our laboratory results indicate that compared with the existing methods, the peak signal-to-noise ratio (PSNR) value of CT images of the AAPM dataset processed by the new model is 33.6490, and the structural similarity (SSIM) value is 0.9174, which also achieves good results on the Piglet dataset with different doses. The results also show that the method removes noise and artifacts while effectively preserving CT images' architecture and grain information.
计算机断层扫描(CT)是一种广泛应用于医疗的成像技术,但 CT 扫描中的辐射剂量过大将对人体造成伤害。降低辐射剂量会导致重建图像中的噪声和伪影增加,使内部组织和边缘细节变得模糊。为了获得高质量的 CT 图像,我们提出了一种用于低剂量 CT(LDCT)去噪的多尺度特征融合网络(MSFLNet)。在我们的 MSFLNet 中,我们结合了多个特征提取模块、有效的降噪模块以及使用注意力机制构建的融合模块,构建了一个水平连接的多尺度结构作为网络的整体架构,用于构建所有尺度的不同层次的特征图。我们创新性地定义了一个由基于 MS-SSIM-L1 的像素级损失和基于边缘的边缘损失组成的复合损失函数,用于 LDCT 去噪。简而言之,我们的方法学习了丰富的特征集,这些特征集结合了来自多个尺度的上下文信息,同时保持了去噪 CT 图像的空间细节。我们的实验室结果表明,与现有方法相比,新模型处理的 AAPM 数据集的 CT 图像的峰值信噪比(PSNR)值为 33.6490,结构相似性(SSIM)值为 0.9174,在不同剂量的 Piglet 数据集上也取得了良好的效果。结果还表明,该方法在有效保留 CT 图像结构和纹理信息的同时,去除了噪声和伪影。