Suppr超能文献

多尺度特征融合网络用于低剂量 CT 去噪。

Multi-Scale Feature Fusion Network for Low-Dose CT Denoising.

机构信息

School of Information and Communication Engineering, North University of China, No.3, College Road, 030051, Taiyuan, Shanxi Province, China.

State Key Laboratory of Dynamic Testing Technology, North University of China, 030051, Taiyuan, China.

出版信息

J Digit Imaging. 2023 Aug;36(4):1808-1825. doi: 10.1007/s10278-023-00805-0. Epub 2023 Mar 13.

Abstract

Computed tomography (CT) is an imaging technique extensively used in medical treatment, but too much radiation dose in a CT scan will cause harm to the human body. Decreasing the dose of radiation will result in increased noise and artifacts in the reconstructed image, blurring the internal tissue and edge details. To get high-quality CT images, we present a multi-scale feature fusion network (MSFLNet) for low-dose CT (LDCT) denoising. In our MSFLNet, we combined multiple feature extraction modules, effective noise reduction modules, and fusion modules constructed using the attention mechanism to construct a horizontally connected multi-scale structure as the overall architecture of the network, which is used to construct different levels of feature maps at all scales. We innovatively define a composite loss function composed of pixel-level loss based on MS-SSIM-L1 and edge-based edge loss for LDCT denoising. In short, our approach learns a rich set of features that combine contextual information from multiple scales while maintaining the spatial details of denoised CT images. Our laboratory results indicate that compared with the existing methods, the peak signal-to-noise ratio (PSNR) value of CT images of the AAPM dataset processed by the new model is 33.6490, and the structural similarity (SSIM) value is 0.9174, which also achieves good results on the Piglet dataset with different doses. The results also show that the method removes noise and artifacts while effectively preserving CT images' architecture and grain information.

摘要

计算机断层扫描(CT)是一种广泛应用于医疗的成像技术,但 CT 扫描中的辐射剂量过大将对人体造成伤害。降低辐射剂量会导致重建图像中的噪声和伪影增加,使内部组织和边缘细节变得模糊。为了获得高质量的 CT 图像,我们提出了一种用于低剂量 CT(LDCT)去噪的多尺度特征融合网络(MSFLNet)。在我们的 MSFLNet 中,我们结合了多个特征提取模块、有效的降噪模块以及使用注意力机制构建的融合模块,构建了一个水平连接的多尺度结构作为网络的整体架构,用于构建所有尺度的不同层次的特征图。我们创新性地定义了一个由基于 MS-SSIM-L1 的像素级损失和基于边缘的边缘损失组成的复合损失函数,用于 LDCT 去噪。简而言之,我们的方法学习了丰富的特征集,这些特征集结合了来自多个尺度的上下文信息,同时保持了去噪 CT 图像的空间细节。我们的实验室结果表明,与现有方法相比,新模型处理的 AAPM 数据集的 CT 图像的峰值信噪比(PSNR)值为 33.6490,结构相似性(SSIM)值为 0.9174,在不同剂量的 Piglet 数据集上也取得了良好的效果。结果还表明,该方法在有效保留 CT 图像结构和纹理信息的同时,去除了噪声和伪影。

相似文献

1
Multi-Scale Feature Fusion Network for Low-Dose CT Denoising.多尺度特征融合网络用于低剂量 CT 去噪。
J Digit Imaging. 2023 Aug;36(4):1808-1825. doi: 10.1007/s10278-023-00805-0. Epub 2023 Mar 13.
8
Unsupervised low-dose CT denoising using bidirectional contrastive network.基于双向对比网络的无监督低剂量 CT 去噪。
Comput Methods Programs Biomed. 2024 Jun;251:108206. doi: 10.1016/j.cmpb.2024.108206. Epub 2024 May 3.
10

本文引用的文献

2
Fine Perceptive GANs for Brain MR Image Super-Resolution in Wavelet Domain.用于小波域脑磁共振图像超分辨率的精细感知生成对抗网络
IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):8802-8814. doi: 10.1109/TNNLS.2022.3153088. Epub 2023 Oct 27.
3
A Dual-Encoder-Single-Decoder Based Low-Dose CT Denoising Network.基于双编码器-单解码器的低剂量 CT 去噪网络。
IEEE J Biomed Health Inform. 2022 Jul;26(7):3251-3260. doi: 10.1109/JBHI.2022.3155788. Epub 2022 Jul 1.
4
Content-Noise Complementary Learning for Medical Image Denoising.基于内容-噪声互补学习的医学图像去噪
IEEE Trans Med Imaging. 2022 Feb;41(2):407-419. doi: 10.1109/TMI.2021.3113365. Epub 2022 Feb 2.
8
Quadratic Autoencoder (Q-AE) for Low-Dose CT Denoising.用于低剂量 CT 去噪的二次自动编码器(Q-AE)
IEEE Trans Med Imaging. 2020 Jun;39(6):2035-2050. doi: 10.1109/TMI.2019.2963248. Epub 2019 Dec 31.
9
Squeeze-and-Excitation Networks.挤压激励网络。
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372. Epub 2019 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验