Suppr超能文献

用于直肠癌术前淋巴管侵犯预测的可解释性MRI亚区域放射组学-深度学习模型:一项双中心研究

Interpretable MRI Subregional Radiomics-Deep Learning Model for Preoperative Lymphovascular Invasion Prediction in Rectal Cancer: A Dual-Center Study.

作者信息

Huang Teng, Zeng Yuping, Jiang Rongjian, Zhou Qiangqiang, Wu Gongfa, Zhong Junyuan

机构信息

Gannan Medical University, Ganzhou, 341000, China.

Department of Medical Imaging, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, China.

出版信息

J Imaging Inform Med. 2025 Jul 11. doi: 10.1007/s10278-025-01586-4.

Abstract

Develop a fusion model based on explainable machine learning, combining multiparametric MRI subregional radiomics and deep learning, to preoperatively predict the lymphovascular invasion status in rectal cancer. We collected data from RC patients with histopathological confirmation from two medical centers, with 301 patients used as a training set and 75 patients as an external validation set. Using K-means clustering techniques, we meticulously divided the tumor areas into multiple subregions and extracted crucial radiomic features from them. Additionally, we employed an advanced Vision Transformer (ViT) deep learning model to extract features. These features were integrated to construct the SubViT model. To better understand the decision-making process of the model, we used the Shapley Additive Properties (SHAP) tool to evaluate the model's interpretability. Finally, we comprehensively assessed the performance of the SubViT model through receiver operating characteristic (ROC) curves, decision curve analysis (DCA), and the Delong test, comparing it with other models. In this study, the SubViT model demonstrated outstanding predictive performance in the training set, achieving an area under the curve (AUC) of 0.934 (95% confidence interval: 0.9074 to 0.9603). It also performed well in the external validation set, with an AUC of 0.884 (95% confidence interval: 0.8055 to 0.9616), outperforming both subregion radiomics and imaging-based models. Furthermore, decision curve analysis (DCA) indicated that the SubViT model provides higher clinical utility compared to other models. As an advanced composite model, the SubViT model demonstrated its efficiency in the non-invasive assessment of local vascular invasion (LVI) in rectal cancer.

摘要

基于可解释机器学习开发一种融合模型,结合多参数MRI亚区域放射组学和深度学习,以术前预测直肠癌的淋巴管侵犯状态。我们从两个医疗中心收集了经组织病理学证实的直肠癌患者数据,其中301例患者作为训练集,75例患者作为外部验证集。我们使用K均值聚类技术将肿瘤区域细致地划分为多个亚区域,并从中提取关键的放射组学特征。此外,我们采用先进的视觉Transformer(ViT)深度学习模型来提取特征。这些特征被整合以构建SubViT模型。为了更好地理解模型的决策过程,我们使用Shapley加性属性(SHAP)工具来评估模型的可解释性。最后,我们通过受试者操作特征(ROC)曲线、决策曲线分析(DCA)和德龙检验全面评估SubViT模型的性能,并与其他模型进行比较。在本研究中,SubViT模型在训练集中表现出出色的预测性能,曲线下面积(AUC)达到0.934(95%置信区间:0.9074至0.9603)。它在外部验证集中也表现良好,AUC为0.884(95%置信区间:0.8055至0.9616),优于亚区域放射组学模型和基于影像的模型。此外,决策曲线分析(DCA)表明,与其他模型相比,SubViT模型具有更高的临床实用性。作为一种先进的复合模型,SubViT模型在直肠癌局部血管侵犯(LVI)的无创评估中展示了其有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验