Ferreira Silvério Nicole, van den Wollenberg Wouter, Betgen Anja, Wiersema Lisa, Marijnen Corrie A M, Peters Femke, van der Heide Uulke A, Simões Rita, Intven Martijn P W, van der Bijl Erik, Janssen Tomas
Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121 1066CX Amsterdam, the Netherlands.
Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100 3584CX Utrecht, the Netherlands.
Radiother Oncol. 2025 Feb;203:110667. doi: 10.1016/j.radonc.2024.110667. Epub 2024 Dec 13.
BACKGROUND & PURPOSE: Deep learning (DL) based auto-segmentation has shown to be beneficial for online adaptive radiotherapy (OART). However, auto-segmentation of clinical target volumes (CTV) is complex, as clinical interpretations are crucial in their definition. The resulting variation between clinicians and institutes hampers the generalizability of DL networks. In OART the CTV is delineated during treatment preparation which makes the clinician intent explicitly available during treatment. We studied whether multicenter generalisability improves when using this prior clinical knowledge, the pre-treatment delineation, as a patient-specific prior for DL models for online auto-segmentation of the mesorectal CTV.
MATERIAL & METHODS: We included intermediate risk or locally advanced rectal cancer patients from three centers. Patient-specific weight maps were created by combining the patient-specific CTV delineation on the pre-treatment scan with population-based variation of likely inter-fraction mesorectal CTV deformations. We trained two models to auto-segment the mesorectal CTV on in-house data, one with (MRI + prior) and one without (MRI-only) priors. Both models were applied to two external datasets. An external baseline model was trained without priors from scratch for one external center. Performance was evaluated on the DSC, surface Dice, 95HD and MSD.
For both external centers, the MRI + prior model outperformed the MRI-only model significantly on the segmentation metrics (p-values < 0.01). There was no significant difference between the external baseline model and the MRI + prior model.
Adding patient-specific weight maps makes the CTV segmentation model more robust to institutional preferences. Performance was comparable to a model trained locally from scratch. This makes this approach suitable for generalization to multiple centers.
基于深度学习(DL)的自动分割已被证明对在线自适应放疗(OART)有益。然而,临床靶区(CTV)的自动分割很复杂,因为临床解读在其定义中至关重要。临床医生和机构之间的差异阻碍了DL网络的通用性。在OART中,CTV是在治疗准备期间勾画的,这使得临床医生的意图在治疗期间明确可用。我们研究了在使用这种先前的临床知识(治疗前的勾画)作为直肠系膜CTV在线自动分割DL模型的患者特异性先验时,多中心通用性是否会提高。
我们纳入了来自三个中心的中危或局部晚期直肠癌患者。通过将治疗前扫描上患者特异性的CTV勾画与直肠系膜CTV分次间可能变形的基于人群的变化相结合,创建患者特异性权重图。我们在内部数据上训练了两个模型来自动分割直肠系膜CTV,一个有先验(MRI + 先验),一个没有先验(仅MRI)。两个模型都应用于两个外部数据集。为一个外部中心从头开始训练了一个没有先验的外部基线模型。在DSC、表面骰子系数、95HD和MSD上评估性能。
对于两个外部中心,MRI + 先验模型在分割指标上显著优于仅MRI模型(p值 < 0.01)。外部基线模型与MRI + 先验模型之间没有显著差异。
添加患者特异性权重图使CTV分割模型对机构偏好更具鲁棒性。性能与从零开始在本地训练的模型相当。这使得这种方法适用于推广到多个中心。