Yuan Chang, Li Shicheng, Wang Ke, Liu Qinghua, Li Wentao, Zhao Weiguo, Guo Guangyou, Wei Lai
School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
School of Automation, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
Plants (Basel). 2025 Jul 7;14(13):2084. doi: 10.3390/plants14132084.
Mulberry ( spp.), as an economically significant crop in sericulture and medicinal applications, faces severe threats to leaf yield and quality from pest and disease infestations. Traditional detection methods relying on chemical pesticides and manual observation prove inefficient and unsustainable. Although computer vision and deep learning technologies offer new solutions, existing models exhibit limitations in natural environments, including low recognition rates for small targets, insufficient computational efficiency, poor adaptability to occlusions, and inability to accurately identify structural features such as leaf veins. We propose Mamba-YOLO-ML, an optimized model addressing three key challenges in vision-based detection: Phase-Modular Design (PMSS) with dual blocks enhancing multi-scale feature representation and SSM selective mechanisms and Mamba Block, Haar wavelet downsampling preserving critical texture details, and Normalized Wasserstein Distance loss improving small-target robustness. Visualization analysis of the detection performance on the test set using GradCAM revealed that the enhanced Mamba-YOLO-ML model demonstrates earlier and more effective focus on characteristic regions of different diseases compared with its predecessor. The improved model achieved superior detection accuracy with 78.2% mAP50 and 59.9% mAP50:95, outperforming YOLO variants and comparable Transformer-based models, establishing new state-of-the-art performance. Its lightweight architecture (5.6 million parameters, 13.4 GFLOPS) maintains compatibility with embedded devices, enabling real-time field deployment. This study provides an extensible technical solution for precision agriculture, facilitating sustainable mulberry cultivation through efficient pest and disease management.
桑树(桑属)作为养蚕业和医药应用中具有重要经济价值的作物,其叶片产量和质量正面临病虫害侵袭的严重威胁。依靠化学农药和人工观察的传统检测方法效率低下且不可持续。尽管计算机视觉和深度学习技术提供了新的解决方案,但现有模型在自然环境中存在局限性,包括对小目标的识别率低、计算效率不足、对遮挡的适应性差以及无法准确识别叶脉等结构特征。我们提出了Mamba-YOLO-ML,这是一个优化模型,解决了基于视觉的检测中的三个关键挑战:具有双模块的相位模块化设计(PMSS)增强多尺度特征表示和SSM选择机制以及Mamba模块,哈尔小波下采样保留关键纹理细节,以及归一化瓦瑟斯坦距离损失提高小目标鲁棒性。使用GradCAM对测试集上的检测性能进行可视化分析表明,与之前的模型相比,增强后的Mamba-YOLO-ML模型能更早、更有效地聚焦于不同病害的特征区域。改进后的模型实现了卓越的检测精度,mAP50为78.2%,mAP50:95为59.9%,优于YOLO变体和基于Transformer的可比模型,确立了新的最先进性能。其轻量级架构(560万个参数,13.4 GFLOPS)与嵌入式设备保持兼容,能够进行实时现场部署。本研究为精准农业提供了一种可扩展的技术解决方案,通过高效的病虫害管理促进桑树的可持续种植。