Suppr超能文献

YOLO-JD:一种用于从图像中检测黄麻病虫害的深度学习网络。

YOLO-JD: A Deep Learning Network for Jute Diseases and Pests Detection from Images.

作者信息

Li Dawei, Ahmed Foysal, Wu Nailong, Sethi Arlin I

机构信息

College of Information Sciences and Technology, Donghua University, Shanghai 201620, China.

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.

出版信息

Plants (Basel). 2022 Mar 30;11(7):937. doi: 10.3390/plants11070937.

Abstract

Recently, disease prevention in jute plants has become an urgent topic as a result of the growing demand for finer quality fiber. This research presents a deep learning network called YOLO-JD for detecting jute diseases from images. In the main architecture of YOLO-JD, we integrated three new modules such as Sand Clock Feature Extraction Module (SCFEM), Deep Sand Clock Feature Extraction Module (DSCFEM), and Spatial Pyramid Pooling Module (SPPM) to extract image features effectively. We also built a new large-scale image dataset for jute diseases and pests with ten classes. Compared with other state-of-the-art experiments, YOLO-JD has achieved the best detection accuracy, with an average mAP of 96.63%.

摘要

近年来,由于对更优质纤维的需求不断增长,黄麻植物的病害防治已成为一个紧迫的话题。本研究提出了一种名为YOLO-JD的深度学习网络,用于从图像中检测黄麻病害。在YOLO-JD的主要架构中,我们集成了三个新模块,即沙漏特征提取模块(SCFEM)、深度沙漏特征提取模块(DSCFEM)和空间金字塔池化模块(SPPM),以有效地提取图像特征。我们还构建了一个包含十个类别的新的大规模黄麻病虫害图像数据集。与其他现有最先进的实验相比,YOLO-JD取得了最佳的检测准确率,平均mAP为96.63%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2169/9003326/47a033651932/plants-11-00937-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验