Li Dawei, Ahmed Foysal, Wu Nailong, Sethi Arlin I
College of Information Sciences and Technology, Donghua University, Shanghai 201620, China.
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
Plants (Basel). 2022 Mar 30;11(7):937. doi: 10.3390/plants11070937.
Recently, disease prevention in jute plants has become an urgent topic as a result of the growing demand for finer quality fiber. This research presents a deep learning network called YOLO-JD for detecting jute diseases from images. In the main architecture of YOLO-JD, we integrated three new modules such as Sand Clock Feature Extraction Module (SCFEM), Deep Sand Clock Feature Extraction Module (DSCFEM), and Spatial Pyramid Pooling Module (SPPM) to extract image features effectively. We also built a new large-scale image dataset for jute diseases and pests with ten classes. Compared with other state-of-the-art experiments, YOLO-JD has achieved the best detection accuracy, with an average mAP of 96.63%.
近年来,由于对更优质纤维的需求不断增长,黄麻植物的病害防治已成为一个紧迫的话题。本研究提出了一种名为YOLO-JD的深度学习网络,用于从图像中检测黄麻病害。在YOLO-JD的主要架构中,我们集成了三个新模块,即沙漏特征提取模块(SCFEM)、深度沙漏特征提取模块(DSCFEM)和空间金字塔池化模块(SPPM),以有效地提取图像特征。我们还构建了一个包含十个类别的新的大规模黄麻病虫害图像数据集。与其他现有最先进的实验相比,YOLO-JD取得了最佳的检测准确率,平均mAP为96.63%。