Suppr超能文献

检测变压器综述:从基本架构到高级发展及视觉感知应用

A Review of DEtection TRansformer: From Basic Architecture to Advanced Developments and Visual Perception Applications.

作者信息

Yu Liang, Tang Lin, Mu Lisha

机构信息

College of Software Engineering, Sichuan Polytechnic University, Deyang 618000, China.

出版信息

Sensors (Basel). 2025 Jun 25;25(13):3952. doi: 10.3390/s25133952.

Abstract

DEtection TRansformer (DETR) introduced an end-to-end object detection paradigm using Transformers, eliminating hand-crafted components like anchor boxes and Non-Maximum Suppression (NMS) via set prediction and bipartite matching. Despite its potential, the original DETR suffered from slow convergence, poor small object detection, and low efficiency, prompting extensive research. This paper systematically reviews DETR's technical evolution from a "problem-driven" perspective, focusing on advancements in attention mechanisms, query design, training strategies, and architectural efficiency. We also outline DETR's applications in autonomous driving, medical imaging, and remote sensing, and its expansion to fine-grained classification and video understanding. Finally, we summarize current challenges and future directions. This "problem-driven" analysis offers researchers a comprehensive and insightful overview, aiming to fill gaps in the existing literature on DETR's evolution and logic.

摘要

检测变压器(DETR)引入了一种使用变压器的端到端目标检测范式,通过集合预测和二分匹配消除了诸如锚框和非极大值抑制(NMS)等手工制作的组件。尽管有其潜力,但原始的DETR存在收敛速度慢、小目标检测效果差和效率低等问题,这促使了广泛的研究。本文从“问题驱动”的角度系统地回顾了DETR的技术演进,重点关注注意力机制、查询设计、训练策略和架构效率方面的进展。我们还概述了DETR在自动驾驶、医学成像和遥感中的应用,以及它向细粒度分类和视频理解的扩展。最后,我们总结了当前的挑战和未来的方向。这种“问题驱动”的分析为研究人员提供了全面而深刻的概述,旨在填补现有文献中关于DETR演进和逻辑的空白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b187/12252279/c8f5a3bc6803/sensors-25-03952-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验