Suppr超能文献

利用可穿戴设备减少人类活动识别中的标签依赖:从监督学习到新型弱自监督方法。

Reducing Label Dependency in Human Activity Recognition with Wearables: From Supervised Learning to Novel Weakly Self-Supervised Approaches.

作者信息

Sheng Taoran, Huber Manfred

机构信息

Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA.

出版信息

Sensors (Basel). 2025 Jun 28;25(13):4032. doi: 10.3390/s25134032.

Abstract

Human activity recognition (HAR) using wearable sensors has advanced through various machine learning paradigms, each with inherent trade-offs between performance and labeling requirements. While fully supervised techniques achieve high accuracy, they demand extensive labeled datasets that are costly to obtain. Conversely, unsupervised methods eliminate labeling needs but often deliver suboptimal performance. This paper presents a comprehensive investigation across the supervision spectrum for wearable-based HAR, with particular focus on novel approaches that minimize labeling requirements while maintaining competitive accuracy. We develop and empirically compare: (1) traditional fully supervised learning, (2) basic unsupervised learning, (3) a weakly supervised learning approach with constraints, (4) a multi-task learning approach with knowledge sharing, (5) a self-supervised approach based on domain expertise, and (6) a novel weakly self-supervised learning framework that leverages domain knowledge and minimal labeled data. Experiments across benchmark datasets demonstrate that: (i) our weakly supervised methods achieve performance comparable to fully supervised approaches while significantly reducing supervision requirements; (ii) the proposed multi-task framework enhances performance through knowledge sharing between related tasks; (iii) our weakly self-supervised approach demonstrates remarkable efficiency with just 10% of labeled data. These results not only highlight the complementary strengths of different learning paradigms, offering insights into tailoring HAR solutions based on the availability of labeled data, but also establish that our novel weakly self-supervised framework offers a promising solution for practical HAR applications where labeled data are limited.

摘要

利用可穿戴传感器进行的人类活动识别(HAR)已经通过各种机器学习范式取得了进展,每种范式在性能和标注要求之间都存在固有的权衡。虽然全监督技术能实现高精度,但它们需要大量有标注的数据集,而获取这些数据集成本很高。相反,无监督方法无需标注,但性能往往欠佳。本文全面研究了基于可穿戴设备的HAR在监督范围内的情况,特别关注那些在保持有竞争力的准确率的同时尽量减少标注要求的新方法。我们开发并通过实验比较了:(1)传统的全监督学习,(2)基本的无监督学习,(3)一种带约束的弱监督学习方法,(4)一种有知识共享的多任务学习方法,(5)一种基于领域专业知识的自监督方法,以及(6)一种利用领域知识和少量有标注数据的新型弱自监督学习框架。在基准数据集上进行的实验表明:(i)我们的弱监督方法在显著降低监督要求的同时,实现了与全监督方法相当的性能;(ii)所提出的多任务框架通过相关任务之间的知识共享提高了性能;(iii)我们的弱自监督方法仅使用10%的有标注数据就展现出了显著的效率。这些结果不仅突出了不同学习范式的互补优势,为根据有标注数据的可用性定制HAR解决方案提供了见解,还表明我们的新型弱自监督框架为标注数据有限的实际HAR应用提供了一个有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e9c/12252065/a40d149135bb/sensors-25-04032-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验