Jin Zhixin, Hu Xudong, Wang Hongli, Guan Shengyu, Liu Kaiman, Fang Zhiwen, Wang Hongwei, Wang Xuesong, Wang Lijie, Zhang Qun
Coal Mine Intelligent Equipment Research Center of Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China.
School of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
Sensors (Basel). 2025 Jun 30;25(13):4064. doi: 10.3390/s25134064.
In response to the challenges posed by complex and variable operating conditions of rolling bearings and the limited availability of labeled data, both of which hinder the effective extraction of key fault features and reduce diagnostic accuracy, this study introduces a model that combines a spatial attention (SA) mechanism with a multi-scale depthwise separable convolution module. The proposed approach first employs the Gramian angular difference field (GADF) to convert raw signals. This conversion maps the temporal characteristics of the signal into an image format that intrinsically preserves both temporal dynamics and phase relationships. Subsequently, the model architecture incorporates a spatial attention mechanism and a multi-scale depthwise separable convolutional module. Guided by the attention mechanism to concentrate on discriminative feature regions and to suppress noise, the convolutional component efficiently extracts hierarchical features in parallel through the multi-scale receptive fields. Furthermore, the trained model serves as a pre-trained network and is transferred to novel variable-condition environments to enhance diagnostic accuracy in few-shot scenarios. The effectiveness of the proposed model was evaluated using bearing datasets and field-collected industrial data. Experimental results confirm that the proposed model offers outstanding fault recognition performance and generalization capability across diverse working conditions, small-sample scenarios, and real industrial environments.
针对滚动轴承复杂多变的运行条件所带来的挑战以及标记数据可用性有限的问题,这两个因素都阻碍了关键故障特征的有效提取并降低了诊断准确性,本研究引入了一种将空间注意力(SA)机制与多尺度深度可分离卷积模块相结合的模型。所提出的方法首先采用格拉姆角差场(GADF)来转换原始信号。这种转换将信号的时间特征映射为一种图像格式,该格式本质上保留了时间动态和相位关系。随后,模型架构纳入了空间注意力机制和多尺度深度可分离卷积模块。在注意力机制的引导下,专注于有区别的特征区域并抑制噪声,卷积组件通过多尺度感受野有效地并行提取分层特征。此外,训练好的模型作为预训练网络,并转移到新的可变条件环境中,以提高少样本场景下的诊断准确性。使用轴承数据集和现场收集的工业数据对所提出模型的有效性进行了评估。实验结果证实,所提出的模型在各种工作条件、小样本场景和实际工业环境中都具有出色的故障识别性能和泛化能力。