Suppr超能文献

用于农业机器人田间测试的移动地面真值3D检测环境

Mobile Ground-Truth 3D Detection Environment for Agricultural Robot Field Testing.

作者信息

Barrelmeyer Daniel, Stiene Stefan, Jose Jannik, Porrmann Mario

机构信息

Faculty of Engineering and Computer Science, University of Applied Sciences Osnabrück, 49076 Osnabrück, Germany.

Institute of Computer Science, Osnabrück University, 49090 Osnabrück, Germany.

出版信息

Sensors (Basel). 2025 Jun 30;25(13):4103. doi: 10.3390/s25134103.

Abstract

Safety and performance validation of autonomous agricultural robots is critically dependent on realistic, mobile test environments that provide high-fidelity ground truth. Existing infrastructures focus on either component-level sensor evaluation in fixed setups or system-level black-box testing under constrained conditions, lacking true mobility, multi-object capability and tracking or detecting objects in multiple Degrees Of Freedom (DOFs) in unstructured fields. In this paper, we present a sensor station network designed to overcome these limitations. Our mobile testbed consists of self-powered stations, each equipped with a high-resolution 3D-Light Detection And Ranging (LiDAR) sensor, dual-antenna Global Navigation Satellite System (GNSS) receivers and on-board edge computers. By synchronising over GNSS time and calibrating rigid LiDAR-to-LiDAR transformations, we fuse point clouds from multiple stations into a coherent geometric representation of a real agricultural environment, which we sample at up to 20 Hz. We demonstrate the performance of the system in field experiments with an autonomous robot traversing a 26,000 m area at up to 20 km/h. Our results show continuous and consistent detections of the robot even at the field boundaries. This work will enable a comprehensive evaluation of geofencing and environmental perception capabilities, paving the way for safety and performance benchmarking of agricultural robot systems.

摘要

自主农业机器人的安全性和性能验证严重依赖于能够提供高保真地面实况的逼真移动测试环境。现有基础设施要么侧重于在固定设置中进行组件级传感器评估,要么在受限条件下进行系统级黑盒测试,缺乏真正的移动性、多目标能力以及在非结构化田地中对多个自由度(DOF)的物体进行跟踪或检测的能力。在本文中,我们提出了一种旨在克服这些限制的传感器站网络。我们的移动测试平台由自供电的站点组成,每个站点都配备有高分辨率3D激光探测与测距(LiDAR)传感器、双天线全球导航卫星系统(GNSS)接收器和车载边缘计算机。通过基于GNSS时间进行同步并校准LiDAR与LiDAR之间的刚性变换,我们将来自多个站点的点云融合成真实农业环境的连贯几何表示,并以高达20Hz的频率进行采样。我们在现场实验中展示了该系统的性能,一个自主机器人以高达20km/h的速度穿越了26,000平方米的区域。我们的结果表明,即使在田地边界,也能对机器人进行连续且一致的检测。这项工作将能够对地理围栏和环境感知能力进行全面评估,为农业机器人系统的安全性和性能基准测试铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c136/12251652/ab43da0737d3/sensors-25-04103-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验