Li Shenwang, Zhou Yuyang, Wang Minjie, Liu Li, Wu Thomas
School of Electrical Engineering, Guangxi University, Nanning 530004, China.
Sensors (Basel). 2025 Jul 3;25(13):4152. doi: 10.3390/s25134152.
Ensuring that electrical workers use personal protective equipment (PPE) correctly is critical to electrical safety, but existing detection methods face significant limitations when applied in the electrical industry. This paper introduces MRC-DETR (Multi-Scale Re-calibration Detection Transformer), a novel framework for detecting Power Engineering Personal Protective Equipment (PEPPE) in complex electrical operating environments. Our method introduces two technical innovations: a Multi-Scale Enhanced Boundary Attention (MEBA) module, which significantly improves the detection of small and occluded targets through optimized feature representation, and a knowledge distillation strategy that enables efficient deployment on edge devices. We further contribute a dedicated PEPPE dataset to address the lack of domain-specific training data. Experimental results demonstrate superior performance compared to existing methods, particularly in challenging power industry scenarios.
确保电气工人正确使用个人防护装备(PPE)对电气安全至关重要,但现有的检测方法在应用于电气行业时面临重大局限性。本文介绍了MRC-DETR(多尺度重新校准检测变压器),这是一种用于在复杂电气操作环境中检测电力工程个人防护装备(PEPPE)的新颖框架。我们的方法引入了两项技术创新:一个多尺度增强边界注意力(MEBA)模块,通过优化特征表示显著提高了对小目标和被遮挡目标的检测能力;以及一种知识蒸馏策略,可实现边缘设备上的高效部署。我们还贡献了一个专门的PEPPE数据集,以解决特定领域训练数据不足的问题。实验结果表明,与现有方法相比,该方法具有卓越的性能,尤其是在具有挑战性的电力行业场景中。