School of Civil Engineering, Central South University, Changsha 410075, China.
School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
Sensors (Basel). 2021 May 17;21(10):3478. doi: 10.3390/s21103478.
The existing deep learning-based Personal Protective Equipment (PPE) detectors can only detect limited types of PPE and their performance needs to be improved, particularly for their deployment on real construction sites. This paper introduces an approach to train and evaluate eight deep learning detectors, for real application purposes, based on You Only Look Once (YOLO) architectures for six classes, including helmets with four colours, person, and vest. Meanwhile, a dedicated high-quality dataset, CHV, consisting of 1330 images, is constructed by considering real construction site background, different gestures, varied angles and distances, and multi PPE classes. The comparison result among the eight models shows that YOLO v5x has the best mAP (86.55%), and YOLO v5s has the fastest speed (52 FPS) on GPU. The detection accuracy of helmet classes on blurred faces decreases by 7%, while there is no effect on other person and vest classes. And the proposed detectors trained on the CHV dataset have a superior performance compared to other deep learning approaches on the same datasets. The novel multiclass CHV dataset is open for public use.
现有的基于深度学习的个人防护装备(PPE)探测器只能检测有限类型的 PPE,其性能需要改进,特别是在实际建筑工地的部署方面。本文介绍了一种方法,基于 You Only Look Once (YOLO) 架构,针对六种类别(包括四种颜色的头盔、人员和背心),训练和评估了八个深度学习探测器,用于实际应用目的。同时,考虑到真实建筑工地背景、不同姿势、不同角度和距离以及多 PPE 类别,构建了一个专用的高质量数据集 CHV,包含 1330 张图像。在八个模型之间的比较结果表明,YOLO v5x 具有最佳的 mAP(86.55%),而 YOLO v5s 在 GPU 上的速度最快(52 FPS)。模糊人脸的头盔类别的检测精度下降了 7%,而对其他人员和背心类别的检测精度没有影响。并且,与相同数据集上的其他深度学习方法相比,在 CHV 数据集上训练的提出的探测器具有更优越的性能。新颖的多类别 CHV 数据集可供公众使用。