de Gorostegui Alfonso, Zanin Massimiliano, Martín-Gonzalo Juan-Andrés, López-López Javier, Gómez-Andrés David, Kiernan Damien, Rausell Estrella
PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain.
Department of Anatomy, Histology & Neuroscience, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
Sensors (Basel). 2025 Jul 7;25(13):4235. doi: 10.3390/s25134235.
The use of gait analysis to differentiate among paediatric populations with neurological and developmental conditions such as idiopathic toe walking (ITW), cerebral palsy (CP), and hereditary spastic paraplegia (HSP) remains challenging due to the insufficient precision of current diagnostic approaches, leading in some cases to misdiagnosis. Existing methods often isolate the analysis of gait variables, overlooking the whole complexity of biomechanical patterns and variations in motor control strategies. While previous studies have explored the use of statistical physics principles for the analysis of impaired gait patterns, gaps remain in integrating both kinematic and kinetic information or benchmarking these approaches against Deep Learning models. This study evaluates the robustness of statistical physics metrics in differentiating between normal and abnormal gait patterns and quantifies how the data source affects model performance. The analysis was conducted using gait data sets from two research institutions in Madrid and Dublin, with a total of 81 children with ITW, 300 with CP, 20 with HSP, and 127 typically developing children as controls. From each kinematic and kinetic time series, Shannon's entropy, permutation entropy, weighted permutation entropy, and time irreversibility metrics were derived and used with Random Forest models. The classification accuracy of these features was compared to a ResNet Deep Learning model. Further analyses explored the effects of inter-laboratory comparisons and the spatiotemporal resolution of time series on classification performance and evaluated the impact of age and walking speed with linear mixed models. The results revealed that statistical physics metrics were able to differentiate among impaired gait patterns, achieving classification scores comparable to ResNet. The effects of walking speed and age on gait predictability and temporal organisation were observed as disease-specific patterns. However, performance differences across laboratories limit the generalisation of the trained models. These findings highlight the value of statistical physics metrics in the classification of children with different toe walking conditions and point towards the need of multimetric integration to improve diagnostic accuracy and gain a more comprehensive understanding of gait disorders.
由于当前诊断方法的精度不足,利用步态分析来区分患有诸如特发性足尖行走(ITW)、脑瘫(CP)和遗传性痉挛性截瘫(HSP)等神经和发育疾病的儿科人群仍然具有挑战性,这在某些情况下会导致误诊。现有方法通常孤立地分析步态变量,忽略了生物力学模式的整体复杂性以及运动控制策略的变化。虽然先前的研究已经探索了使用统计物理原理来分析受损步态模式,但在整合运动学和动力学信息或将这些方法与深度学习模型进行基准测试方面仍存在差距。本研究评估了统计物理指标在区分正常和异常步态模式方面的稳健性,并量化了数据源如何影响模型性能。分析使用了来自马德里和都柏林两个研究机构的步态数据集,共有81名ITW儿童、300名CP儿童、20名HSP儿童以及127名发育正常的儿童作为对照。从每个运动学和动力学时间序列中,导出了香农熵、排列熵、加权排列熵和时间不可逆性指标,并与随机森林模型一起使用。将这些特征的分类准确率与ResNet深度学习模型进行了比较。进一步的分析探讨了实验室间比较和时间序列的时空分辨率对分类性能的影响,并使用线性混合模型评估了年龄和步行速度的影响。结果表明,统计物理指标能够区分受损的步态模式,获得与ResNet相当的分类分数。观察到步行速度和年龄对步态可预测性和时间组织的影响呈现出疾病特异性模式。然而,不同实验室之间的性能差异限制了训练模型的通用性。这些发现凸显了统计物理指标在不同足尖行走状况儿童分类中的价值,并指出需要进行多指标整合以提高诊断准确性并更全面地理解步态障碍。