Biyani Madhav, Matsumoto Mizuki, Yoshimi Yasuo
Chemical Engineering Laboratory, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-Ku, Tokyo 135-8548, Japan.
Innovative Global Program, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-Ku, Tokyo 135-8548, Japan.
Nanomaterials (Basel). 2025 Jun 24;15(13):977. doi: 10.3390/nano15130977.
Neurotransmitters such as serotonin regulate key physiological and cognitive functions, yet real-time detection remains challenging due to the limitations of conventional techniques like amperometry and microdialysis. Fluorescent molecularly imprinted polymer nanoparticles (fMIP-NPs) offer a promising alternative and are typically synthesized via solid-phase synthesis, in which template molecules are covalently immobilized on a solid support to enable site-specific imprinting. However, strong template-template interactions during this process can compromise selectivity. To overcome this, we incorporated a poly(methacrolein--methacrylamide)-based template anchoring strategy to minimize undesired template interactions and enhance imprinting efficiency. We optimized the synthesis of poly(methacrolein--methacrylamide) under three different conditions by varying the monomer compositions and reaction parameters. The poly(methacrolein--methacrylamide) synthesized under Condition 3 (5:1 methacrolein-to-methacrylamide molar ratio, 1:150 initiator-to-total monomer ratio, and 4.59 M total monomer concentration) yielded the most selective fMIP-NPs, whose fluorescence intensity increased with an increase in serotonin concentration, rising by up to 37% upon serotonin binding. This improvement is attributed to higher aldehyde functionality in the poly(methacrolein--methacrylamide) which enhances template immobilization and generates a rigid imprinted cavity to interact with serotonin. These findings suggest that the developed fMIP-NPs hold significant potential as imaging probes for neurotransmitter detection, contributing to advanced studies in neural network analysis.
血清素等神经递质调节着关键的生理和认知功能,但由于电流分析法和微透析等传统技术的局限性,实时检测仍然具有挑战性。荧光分子印迹聚合物纳米颗粒(fMIP-NPs)提供了一种有前景的替代方法,通常通过固相合成来制备,其中模板分子被共价固定在固体载体上以实现位点特异性印迹。然而,在此过程中强烈的模板-模板相互作用会影响选择性。为了克服这一问题,我们采用了一种基于聚(甲基丙烯醛-甲基丙烯酰胺)的模板锚定策略,以尽量减少不必要的模板相互作用并提高印迹效率。我们通过改变单体组成和反应参数,在三种不同条件下优化了聚(甲基丙烯醛-甲基丙烯酰胺)的合成。在条件3(甲基丙烯醛与甲基丙烯酰胺的摩尔比为5:1、引发剂与总单体的比例为1:150、总单体浓度为4.59 M)下合成的聚(甲基丙烯醛-甲基丙烯酰胺)产生了最具选择性的fMIP-NPs,其荧光强度随着血清素浓度的增加而增加,血清素结合后荧光强度最多可提高37%。这种改进归因于聚(甲基丙烯醛-甲基丙烯酰胺)中较高的醛官能度,它增强了模板固定并产生了一个刚性的印迹腔以与血清素相互作用。这些发现表明,所开发的fMIP-NPs作为神经递质检测的成像探针具有巨大潜力,有助于神经网络分析的深入研究。