Nartowska Edyta, Stępień Piotr, Kanuchova Maria
Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, 25-314 Kielce, Poland.
Faculty of Civil Engineering and Architecture, Kielce University of Technology, 25-314 Kielce, Poland.
Materials (Basel). 2025 Jun 20;18(13):2933. doi: 10.3390/ma18132933.
This study examines the formation of the clay mineral simonkolleite (Skl) in bentonites contaminated with zinc(II) chloride (ZnCl), a process that has been little documented in heterogeneous systems such as contaminated bentonites. We explain the contamination mechanisms and provide new insights into the mineralogical, structural, and physicochemical transformations occurring within these materials. The objective, explored for the first time, was to assess how the ZnCl-induced mineral phase formation influences the properties of bentonites used as sealing materials, particularly regarding changes in specific surface area and porosity. Three bentonites were analyzed: Ca-bentonite from Texas (STx-1b), Na-bentonite from Wyoming (SWy-3), and Ca-bentonite from Jelsovy Potok, Slovakia (BSvk). Treatment with ZnCl solution led to ion exchange and the formation of up to ~30% simonkolleite, accompanied by a concurrent decrease in montmorillonite content by 9-30%. A suite of analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray fluorescence (XRF), and energy-dispersive X-ray spectroscopy (EDS), was employed to characterize these transformations. The contamination mechanism of ZnCl involves an ion exchange of Zn within the montmorillonite structure, the partial degradation of specific montmorillonite phases, and the formation of a secondary phase, simonkolleite. These transformations caused a ~50% decrease in specific surface area and porosity as measured by the Brunauer-Emmett-Teller (BET) nitrogen adsorption and Barrett-Joyner-Halenda (BJH) methods. The findings raise concerns regarding the long-term performance of bentonite-based barriers. Further research should evaluate hydraulic conductivity, mechanical strength, and the design of modified bentonite materials with improved resistance to Zn-induced alterations.
本研究考察了被氯化锌(ZnCl)污染的膨润土中粘土矿物西蒙kolleite(Skl)的形成过程,这一过程在诸如受污染膨润土等非均相体系中鲜有文献记载。我们解释了污染机制,并对这些材料中发生的矿物学、结构和物理化学转变提供了新的见解。首次探索的目标是评估ZnCl诱导的矿物相形成如何影响用作密封材料的膨润土的性能,特别是比表面积和孔隙率的变化。分析了三种膨润土:来自德克萨斯州的钙基膨润土(STx-1b)、来自怀俄明州的钠基膨润土(SWy-3)以及来自斯洛伐克耶尔索维波托克的钙基膨润土(BSvk)。用ZnCl溶液处理导致离子交换,并形成高达约30%的西蒙kolleite,同时蒙脱石含量相应减少9 - 30%。采用了一系列分析技术,包括X射线衍射(XRD)、扫描电子显微镜(SEM)、热重分析(TGA)、X射线荧光(XRF)和能量色散X射线光谱(EDS)来表征这些转变。ZnCl的污染机制涉及蒙脱石结构内Zn的离子交换、特定蒙脱石相的部分降解以及次生相西蒙kolleite的形成。通过布鲁瑙尔 - 埃米特 - 特勒(BET)氮气吸附和巴雷特 - 乔伊纳 - 哈伦达(BJH)方法测量,这些转变导致比表面积和孔隙率降低了约50%。这些发现引发了对基于膨润土的屏障长期性能的担忧。进一步的研究应评估水力传导率、机械强度以及设计具有更好抗Zn诱导变化能力的改性膨润土材料。