Kim Yoon-Hee, Cho Hye-Seong, Yoo Kwanghee, Yang Cho-Hee, Lee Sung-Kyu, Kang Homan, Jun Bong-Hyun
Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
Int J Mol Sci. 2025 Jun 26;26(13):6160. doi: 10.3390/ijms26136160.
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal conversion efficiency. FDTD simulation of bumpy nanoshell modeling revealed that thinner nanoshells exhibited higher absorption efficiency across the visible-NIR spectrum. Photothermal films prepared by a three-phase self-assembly method exhibited superior photothermal conversion, with films using thinner nanoshells (11.7 nm) achieving higher surface temperatures and faster water evaporation under both laser and sunlight irradiation. Furthermore, evaporation performance was evaluated using different support layers. Films on PVDF membranes with optimized hydrophilicity and minimized heat convection achieved the highest evaporation rate of 1.067 kg m h under sunlight exposure (937.1 W/m), outperforming cellulose and PTFE supports. This work highlights the critical role of nanostructure design and support layer engineering in enhancing photothermal conversion efficiency, offering a strategy for the development of efficient solar-driven desalination systems.
金属纳米结构辅助的太阳能驱动界面蒸发系统已成为实现可持续水生产的一种有前景的解决方案。在此,我们制备了具有可控壳厚度(11.7纳米和16.6纳米)的凹凸不平的金纳米壳光热膜以及间隙结构,以提高其光热转换效率。对凹凸不平的纳米壳模型进行的时域有限差分(FDTD)模拟表明,较薄的纳米壳在可见 - 近红外光谱范围内表现出更高的吸收效率。通过三相自组装方法制备的光热膜表现出优异的光热转换性能,使用较薄纳米壳(11.7纳米)的膜在激光和阳光照射下均实现了更高的表面温度和更快的水蒸发。此外,使用不同的支撑层评估了蒸发性能。具有优化亲水性和最小化热对流的聚偏氟乙烯(PVDF)膜上的膜在阳光照射(937.1 W/m²)下实现了最高蒸发速率1.067 kg m⁻² h⁻¹,优于纤维素和聚四氟乙烯(PTFE)支撑体。这项工作突出了纳米结构设计和支撑层工程在提高光热转换效率方面的关键作用,为开发高效的太阳能驱动海水淡化系统提供了一种策略。