Suppr超能文献

利用具有可控壳层厚度的凹凸金纳米壳膜实现太阳能驱动的界面蒸发

Solar-Driven Interfacial Evaporation Using Bumpy Gold Nanoshell Films with Controlled Shell Thickness.

作者信息

Kim Yoon-Hee, Cho Hye-Seong, Yoo Kwanghee, Yang Cho-Hee, Lee Sung-Kyu, Kang Homan, Jun Bong-Hyun

机构信息

Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.

出版信息

Int J Mol Sci. 2025 Jun 26;26(13):6160. doi: 10.3390/ijms26136160.

Abstract

Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal conversion efficiency. FDTD simulation of bumpy nanoshell modeling revealed that thinner nanoshells exhibited higher absorption efficiency across the visible-NIR spectrum. Photothermal films prepared by a three-phase self-assembly method exhibited superior photothermal conversion, with films using thinner nanoshells (11.7 nm) achieving higher surface temperatures and faster water evaporation under both laser and sunlight irradiation. Furthermore, evaporation performance was evaluated using different support layers. Films on PVDF membranes with optimized hydrophilicity and minimized heat convection achieved the highest evaporation rate of 1.067 kg m h under sunlight exposure (937.1 W/m), outperforming cellulose and PTFE supports. This work highlights the critical role of nanostructure design and support layer engineering in enhancing photothermal conversion efficiency, offering a strategy for the development of efficient solar-driven desalination systems.

摘要

金属纳米结构辅助的太阳能驱动界面蒸发系统已成为实现可持续水生产的一种有前景的解决方案。在此,我们制备了具有可控壳厚度(11.7纳米和16.6纳米)的凹凸不平的金纳米壳光热膜以及间隙结构,以提高其光热转换效率。对凹凸不平的纳米壳模型进行的时域有限差分(FDTD)模拟表明,较薄的纳米壳在可见 - 近红外光谱范围内表现出更高的吸收效率。通过三相自组装方法制备的光热膜表现出优异的光热转换性能,使用较薄纳米壳(11.7纳米)的膜在激光和阳光照射下均实现了更高的表面温度和更快的水蒸发。此外,使用不同的支撑层评估了蒸发性能。具有优化亲水性和最小化热对流的聚偏氟乙烯(PVDF)膜上的膜在阳光照射(937.1 W/m²)下实现了最高蒸发速率1.067 kg m⁻² h⁻¹,优于纤维素和聚四氟乙烯(PTFE)支撑体。这项工作突出了纳米结构设计和支撑层工程在提高光热转换效率方面的关键作用,为开发高效的太阳能驱动海水淡化系统提供了一种策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de8f/12249822/e1882ada76cb/ijms-26-06160-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验