Suppr超能文献

基于临床和实验室特征开发用于入院时早期预测恙虫病病情进展的机器学习预后模型。

Development of a machine learning prognostic model for early prediction of scrub typhus progression at hospital admission based on clinical and laboratory features.

作者信息

Lu Youguang, Wang Zixu, Wang Junhu, Mao Yingqing, Jiang Chuanshen, Wu Jinpiao, Liu Haizhou, Yi Haiming, Chen Chao, Guo Wei, Liu Liguan, Qi Yong

机构信息

Department of infectious Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China.

Department of infectious Diseases, 900th Hospital of PLA Joint Logistics Support Force, Fuzhou, China.

出版信息

Ann Med. 2025 Dec;57(1):2530696. doi: 10.1080/07853890.2025.2530696. Epub 2025 Jul 11.

Abstract

BACKGROUND

Scrub typhus (ST) is a life-threatening infectious disease caused by . Early prediction of whether the disease will progress to a severe state is crucial for clinicians to provide targeted medical care in advance.

METHODS

This study retrospectively collected severe and mild ST cases in two hospitals in Fujian Province, China from 2011 to 2022. Eighteen objective clinical and laboratory features collected at admission were screened using various feature selection algorithms, and used to construct models based on six machine learning algorithms.

RESULTS

The model based on Gradient Boosting Decision Tree using 14 features screened by Recursive Feature Elimination was evaluated as the optimal one. The model showed high accuracy, precision, sensitivity, specificity, F-1 score, and area under receiver operating characteristics curve of 0.975, 0.967, 0.983, 0.966, 0.975, and 0.981, respectively, indicating its possible clinical application. Additionally, a simplified model based on Support Vector Machine was constructed and evaluated as an alternative optimal model.

CONCLUSIONS

This study is the first to use machine learning algorithms to accurately predict the developments of ST patients upon admission to hospitals. The models can help clinicians assess the potential risks of their patients early on, thereby improving patient outcomes.

摘要

背景

恙虫病(ST)是一种由……引起的危及生命的传染病。早期预测该疾病是否会进展为重症状态对于临床医生提前提供有针对性的医疗护理至关重要。

方法

本研究回顾性收集了2011年至2022年中国福建省两家医院的重症和轻症恙虫病病例。使用各种特征选择算法筛选入院时收集的18项客观临床和实验室特征,并用于构建基于六种机器学习算法的模型。

结果

基于梯度提升决策树且使用通过递归特征消除筛选出的14个特征构建的模型被评估为最优模型。该模型分别显示出高准确率、精确率、灵敏度、特异性、F1分数以及受试者工作特征曲线下面积,分别为0.975、0.967、0.983、0.966、0.975和0.981,表明其具有临床应用的可能性。此外,构建了基于支持向量机的简化模型并将其评估为替代最优模型。

结论

本研究首次使用机器学习算法准确预测恙虫病患者入院后的病情发展。这些模型可以帮助临床医生早期评估患者的潜在风险,从而改善患者的治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c86/12258258/955cddaaf2ea/IANN_A_2530696_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验