Li Zeyang, Chen Yong, Chen Xihua, Guo Zhongjian, Guan Guoqiang, Feng Yong, Chen Huayou
School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
World J Microbiol Biotechnol. 2025 Jul 12;41(7):266. doi: 10.1007/s11274-025-04475-8.
Glucose oxidase (GOD), an oxidoreductase (EC 1.1.3.4), catalyzes the oxidation of β-D-glucose to gluconic acid using molecular oxygen as the electron acceptor, with concomitant generation of hydrogen peroxide. Owing to its versatile catalytic properties, GOD has garnered significant attention across diverse fields, including food and beverage manufacture, agriculture, biosensors and biotechnology. However, the inherent limitations of native enzymes, including susceptibility to inactivation under harsh conditions and insufficient catalytic efficiency, restrict their practical utility in advanced industry. This review systematically summarizes recent advances in molecular engineering strategies for GOD optimization, focusing on rational design and directed evolution approaches to improve its functional robustness and application adaptability in the bioeconomy. Furthermore, we highlight the prospective role of artificial intelligence (AI) and machine learning (ML) in addressing the classical activity-stability trade-off, enabling data-driven prediction of mutation hotspots and dynamic regulation of enzymatic properties. By integrating computational biology with experimental validation, this work proposes a theoretical framework and technical roadmap for developing "tailored" GOD variants that meet precise industrial requirements. The insights presented herein aim to bridge the gap between fundamental enzyme research and scalable biomanufacturing, fostering innovation in sustainable biotechnology.
葡萄糖氧化酶(GOD)是一种氧化还原酶(EC 1.1.3.4),它以分子氧作为电子受体,催化β-D-葡萄糖氧化为葡萄糖酸,并伴随产生过氧化氢。由于其多样的催化特性,GOD在包括食品饮料制造、农业、生物传感器和生物技术等多个领域受到了广泛关注。然而,天然酶存在一些固有的局限性,如在苛刻条件下易失活以及催化效率不足,这限制了它们在先进工业中的实际应用。本综述系统地总结了GOD优化的分子工程策略的最新进展,重点关注合理设计和定向进化方法,以提高其在生物经济中的功能稳健性和应用适应性。此外,我们强调了人工智能(AI)和机器学习(ML)在解决经典的活性-稳定性权衡问题、实现数据驱动的突变热点预测以及酶特性的动态调控方面的潜在作用。通过将计算生物学与实验验证相结合,本研究提出了一个理论框架和技术路线图,用于开发满足精确工业需求的“定制化”GOD变体。本文所阐述的见解旨在弥合基础酶研究与可扩展生物制造之间的差距,促进可持续生物技术的创新。