Suppr超能文献

1981年至2021年中国黄淮海平原冬小麦物候数据集的变化

Variation of winter wheat phenology dataset in Huang Huai Hai Plain of China from 1981 to 2021.

作者信息

Zhang Quan-Jun, Wu Dong-Li, Gao Jing

机构信息

Meteorological Observation Centre, China Meteorological Administration (CMA), Beijing, 100081, China.

National Meteorological Information Center, Beijing, 100081, China.

出版信息

Sci Data. 2025 Jul 12;12(1):1203. doi: 10.1038/s41597-025-05368-z.

Abstract

This study presents a comprehensive analysis of winter wheat phenological variations in China's Huang-Huai-Hai Plain (HHHP) from 1981 to 2021, leveraging data from 62 national agrometeorological observation stations. As the world's largest winter wheat production region, the HHHP contributes over 60% of China's total output, playing a pivotal role in national food security. Using kernel density estimation (KDE) and univariate linear regression, the dataset characterizes interannual trends in key phenological stages-sowing, emergence, tillering, jointing, booting, heading, flowering, milking, and maturity-along with growth period durations. Results reveal significant shifts in phenological timings and growth stages under climate change, such as advanced heading stages and altered phase lengths, which correlate with temperature increases and extreme weather events. The dataset, comprising 1,120 figures generated via Origin Lab, is publicly available on ScienceDB, providing critical insights for climate adaptation strategies, cultivation optimization, and yield stability. Technical validation confirms the reliability of the data, sourced from standardized, long-term manual observations by trained professionals under China Meteorological Administration protocols. This work offers a foundational resource for understanding climate-crop interactions and guiding sustainable agricultural practices in a warming world.

摘要

本研究利用62个国家农业气象观测站的数据,对1981年至2021年中国黄淮海平原(HHHP)冬小麦物候变化进行了全面分析。作为世界上最大的冬小麦产区,黄淮海平原的产量占中国总产量的60%以上,在国家粮食安全中发挥着关键作用。该数据集使用核密度估计(KDE)和单变量线性回归,描述了关键物候期(播种、出苗、分蘖、拔节、孕穗、抽穗、开花、灌浆和成熟)的年际趋势以及生育期持续时间。结果显示,在气候变化下,物候时间和生长阶段发生了显著变化,如抽穗期提前和生育阶段长度改变,这与气温升高和极端天气事件相关。该数据集由Origin Lab生成的1120幅图表组成,已在ScienceDB上公开提供,为气候适应策略、种植优化和产量稳定性提供了关键见解。技术验证证实了数据的可靠性,这些数据来自训练有素的专业人员按照中国气象局协议进行的标准化长期人工观测。这项工作为理解气候与作物的相互作用以及在气候变暖的世界中指导可持续农业实践提供了基础资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验