Bhaskar Dhananjay, Zhang Yanlei, Moore Jessica, Gao Feng, Rieck Bastian, Wolf Guy, Khasawneh Firas, Munch Elizabeth, Noah J Adam, Pushkarskaya Helen, Pittenger Christopher, Greco Valentina, Krishnaswamy Smita
Kavli Institute for Neuroscience, Yale School of Medicine.
Department of Computer Science, Yale University.
bioRxiv. 2025 May 8:2023.03.22.533807. doi: 10.1101/2023.03.22.533807.
Neural signals are high-dimensional, noisy, and dynamic, making it challenging to extract interpretable features linked to behavior or disease. We introduce , a framework that encodes neural activity as latent trajectories shaped by spatial and temporal structure. At each timepoint, signals are represented on a graph capturing spatial relationships, with a learnable attention mechanism highlighting important regions. These are embedded using graph wavelets and passed through a manifold-regularized autoencoder that preserves temporal geometry. The resulting latent trajectory is summarized using a principled set of descriptors - including curvature, path signatures, persistent homology, and recurrent networks -that capture multiscale geometric, topological, and dynamical features. These features drive downstream prediction in a modular, interpretable, and end-to-end trainable framework. We evaluate Neurospectrum on simulated and experimental datasets. It tracks phase synchronization in Kuramoto simulations, reconstructs visual stimuli from calcium imaging, and identifies biomarkers of obsessive-compulsive disorder in fMRI. Across tasks, Neurospectrum uncovers meaningful neural dynamics and outperforms traditional analysis methods.
神经信号具有高维度、噪声大且动态变化的特点,这使得提取与行为或疾病相关的可解释特征具有挑战性。我们引入了Neurospectrum,这是一个将神经活动编码为受空间和时间结构塑造的潜在轨迹的框架。在每个时间点,信号在捕获空间关系的图上表示,通过可学习的注意力机制突出重要区域。这些区域使用图小波进行嵌入,并通过保持时间几何结构的流形正则化自动编码器。由此产生的潜在轨迹使用一组有原则的描述符进行总结,包括曲率、路径特征、持久同调以及循环网络,这些描述符捕捉多尺度几何、拓扑和动态特征。这些特征在一个模块化、可解释且端到端可训练的框架中驱动下游预测。我们在模拟和实验数据集上评估了Neurospectrum。它跟踪了Kuramoto模拟中的相位同步,从钙成像中重建视觉刺激,并在功能磁共振成像中识别强迫症的生物标志物。在所有任务中,Neurospectrum都揭示了有意义的神经动力学,并且优于传统分析方法。