Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA.
Department of Statistics and Actuarial Science, the University of Hong Kong, CN, Hong Kong.
Neuroimage. 2022 Jul 1;254:119131. doi: 10.1016/j.neuroimage.2022.119131. Epub 2022 Mar 23.
Dynamic resting state functional connectivity (RSFC) characterizes fluctuations that occur over time in functional brain networks. Existing methods to extract dynamic RSFCs, such as sliding-window and clustering methods that are inherently non-adaptive, have various limitations such as high-dimensionality, an inability to reconstruct brain signals, insufficiency of data for reliable estimation, insensitivity to rapid changes in dynamics, and a lack of generalizability across multiply functional imaging modalities. To overcome these deficiencies, we develop a novel and unifying time-varying dynamic network (TVDN) framework for examining dynamic resting state functional connectivity. TVDN includes a generative model that describes the relation between a low-dimensional dynamic RSFC and the brain signals, and an inference algorithm that automatically and adaptively learns the low-dimensional manifold of dynamic RSFC and detects dynamic state transitions in data. TVDN is applicable to multiple modalities of functional neuroimaging such as fMRI and MEG/EEG. The estimated low-dimensional dynamic RSFCs manifold directly links to the frequency content of brain signals. Hence we can evaluate TVDN performance by examining whether learnt features can reconstruct observed brain signals. We conduct comprehensive simulations to evaluate TVDN under hypothetical settings. We then demonstrate the application of TVDN with real fMRI and MEG data, and compare the results with existing benchmarks. Results demonstrate that TVDN is able to correctly capture the dynamics of brain activity and more robustly detect brain state switching both in resting state fMRI and MEG data.
动态静息态功能连接(RSFC)描述了功能脑网络随时间变化的波动。现有的提取动态 RSFC 的方法,如滑动窗口和聚类方法,本质上是非自适应的,存在各种局限性,如高维性、无法重建脑信号、数据可靠性估计不足、对动力学快速变化的不敏感性以及在多种功能成像模态之间缺乏通用性。为了克服这些缺陷,我们开发了一种新颖而统一的时变动态网络(TVDN)框架,用于研究动态静息态功能连接。TVDN 包括一个生成模型,该模型描述了低维动态 RSFC 与脑信号之间的关系,以及一个推断算法,该算法自动且自适应地学习动态 RSFC 的低维流形,并在数据中检测动态状态转换。TVDN 适用于 fMRI 和 MEG/EEG 等多种功能神经影像学模态。估计的低维动态 RSFC 流形直接与脑信号的频率内容相关联。因此,我们可以通过检查学习到的特征是否可以重建观察到的脑信号来评估 TVDN 的性能。我们在假设的设置下进行了全面的模拟来评估 TVDN。然后,我们展示了使用真实 fMRI 和 MEG 数据的 TVDN 的应用,并将结果与现有基准进行了比较。结果表明,TVDN 能够正确捕捉脑活动的动力学,并在 fMRI 和 MEG 数据的静息状态下更稳健地检测脑状态切换。