Qabar Christine M, Waldburger Lucas, Keasling Jay D, Portnoy Dan A, Cox Jeffery S
Department of Plant and Microbial Biology, University of California Berkeley, Berkeley CA 94720, USA.
Department of Bioengineering, University of California Berkeley, Berkeley CA 94720, USA.
bioRxiv. 2025 May 9:2025.05.05.651767. doi: 10.1101/2025.05.05.651767.
There is an urgent need to develop a more efficacious anti-tuberculosis vaccine as the current live-attenuated vaccine strain BCG fails to prevent pulmonary infection in adults. Our long-term goal is to test whether increasing the immunogenicity of BCG will improve vaccine effectiveness while maintaining its proven safety profile. In this study, we leverage a synthetic biology approach to engineer BCG to produce more (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), a phosphoantigen produced as an intermediate of bacterial-but not host-isoprenoid biosynthesis via the methylerythritol phosphate (MEP) pathway. Importantly, HMBPP strongly activates and expands Vγ9Vδ2 T cells, which are unique to higher-order primates and protect against infection. Prior work to engineer BCG to produce specific ligands and antigens has been attempted to some success; however, our strategy exploits a self-nonself recognition mechanism in the host via HMBPP sensing, which has not been attempted before in this way. To inform the design of our recombinant strains, we performed synteny analyses of >63 mycobacterial species, which revealed that isoprenoid biosynthetic genes are not found in gene clusters or operons across all the 356 surveyed genomes. This analysis also revealed pair biases of isoprenoid biosynthesis genes frequently found in close proximity. In our engineering attempts, we found that simply overexpressing the rate-limiting gene in the pathway was toxic to the bacterium. Thus, we generated synthetic loci with the goal of specifically overproducing HMBPP, and tested the ability of these engineered strains to induce human Vγ9Vδ2 expansion in an stimulation assay. We found that BCG expressing a rationally-designed, synthetic MEP locus did not enhance Vγ9Vδ2 T cell expansion over the wild-type vaccine strain, suggesting that ectopic expression of multiple MEP genes may result in feedback inhibition of the pathway. However we found that overexpression of the HMBPP synthase GcpE alone potently induced Vγ9Vδ2 T cell expansion and did not result in downregulation of other pathway genes, presenting a successful strategy to accumulate HMBPP and overcome feedback inhibition in this pathway. While much remains to be done to ultimately develop a more efficacious vaccine, our data present a promising system to improve upon the BCG platform. To our knowledge, this is the first work to attempt reengineering of the MEP pathway in BCG to improve vaccine efficacy.
由于目前的减毒活疫苗菌株卡介苗无法预防成人肺部感染,因此迫切需要开发一种更有效的抗结核疫苗。我们的长期目标是测试提高卡介苗的免疫原性是否会在保持其已证实的安全性的同时提高疫苗效力。在本研究中,我们利用合成生物学方法对卡介苗进行工程改造,以产生更多的(E)-4-羟基-3-甲基丁-2-烯基焦磷酸(HMBPP),这是一种磷酸抗原,是细菌而非宿主异戊二烯生物合成通过甲基赤藓糖醇磷酸(MEP)途径产生的中间体。重要的是,HMBPP能强烈激活并扩增Vγ9Vδ2 T细胞,这是高等灵长类动物特有的细胞,能预防感染。之前对卡介苗进行工程改造以产生特定配体和抗原的工作已取得一定成功;然而,我们的策略通过HMBPP感知利用了宿主中的自我-非自我识别机制,此前尚未有人以这种方式尝试过。为指导我们重组菌株的设计,我们对63种以上的分枝杆菌进行了共线性分析,结果显示在所有356个被调查基因组的基因簇或操纵子中均未发现异戊二烯生物合成基因。该分析还揭示了异戊二烯生物合成基因经常在相邻位置出现的配对偏差。在我们的工程尝试中,我们发现简单地过表达该途径中的限速基因对细菌有毒性。因此,我们生成了旨在特异性过量生产HMBPP的合成基因座,并在刺激试验中测试了这些工程菌株诱导人Vγ9Vδ2扩增的能力。我们发现,表达合理设计的合成MEP基因座的卡介苗在Vγ9Vδ2 T细胞扩增方面并不比野生型疫苗菌株更强,这表明多个MEP基因的异位表达可能导致该途径的反馈抑制。然而,我们发现单独过表达HMBPP合酶GcpE能有效诱导Vγ9Vδ2 T细胞扩增,且不会导致其他途径基因的下调,这为积累HMBPP并克服该途径中的反馈抑制提供了一种成功策略。虽然要最终开发出一种更有效的疫苗仍有许多工作要做,但我们的数据提供了一个有前景的系统来改进卡介苗平台。据我们所知,这是首次尝试对卡介苗中的MEP途径进行重新设计以提高疫苗效力的工作。