Hamzehei Sahand, Jeny Afsana Ahsan, Jin Annie, Yang Clifford, Nabavi Sheida
Computer Science & Engineering, University of Connecticut, Storrs, USA.
Department of Radiology, UConn Health, Farmington, USA.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2024 Dec;2024:1996-2003. doi: 10.1109/bibm62325.2024.10822291.
Mammogram image analysis has benefited from advancements in artificial intelligence (AI), particularly through the use of Siamese networks, which, similar to radiologists, compare current and prior mammogram images to enhance diagnostic accuracy. One of the main challenges in employing Siamese networks for this purpose is selecting an effective distance function. Given the complexity of mammogram images and the high correlation between current and prior images, traditional distance functions in Siamese networks often fall short in capturing the subtle, non-linear differences between these correlated features. This study explores the impact of incorporating non-linear and correlation-sensitive distance functions within a Siamese network framework for analyzing paired mammogram images. We benchmarked different distance functions, including Euclidean, Manhattan, Mahalanobis, Radial Basis Function (RBF), and cosine, and introduced a novel combination of RBF with Matern Covariance. Our evaluation revealed that the RBF with Matern Covariance consistently outperformed other functions, emphasizing the importance of addressing non-linearity and correlation in this context. For instance, the ResNet50 model, when paired with this distance function, achieved an accuracy of 0.938, sensitivity of 0.921, precision of 0.955, specificity of 0.958, F1 score of 0.930, and AUC of 0.940. We observed similarly strong performance across other models as well. Furthermore, the robustness of our approach was confirmed through evaluation on a dataset of 30 cross-validation samples, demonstrating its generalizability. These findings underscore the effectiveness of non-linear and correlation-based distance functions in Siamese networks for improving the performance and generalization of mammogram image analysis. All codes used in this paper are available at https://github.com/NabaviLab/Benchmarking_Distance_Functions_in_Siamese_Networks.
乳房X光图像分析受益于人工智能(AI)的进步,特别是通过使用连体网络,该网络类似于放射科医生,通过比较当前和先前的乳房X光图像来提高诊断准确性。将连体网络用于此目的的主要挑战之一是选择有效的距离函数。鉴于乳房X光图像的复杂性以及当前图像和先前图像之间的高度相关性,连体网络中的传统距离函数在捕捉这些相关特征之间细微的非线性差异方面往往表现不佳。本研究探讨了在连体网络框架内纳入非线性和相关性敏感距离函数对分析配对乳房X光图像的影响。我们对不同的距离函数进行了基准测试,包括欧几里得距离、曼哈顿距离、马氏距离、径向基函数(RBF)和余弦距离,并引入了RBF与马特恩协方差的新颖组合。我们的评估表明,带有马特恩协方差的RBF始终优于其他函数,强调了在这种情况下解决非线性和相关性的重要性。例如,ResNet50模型与该距离函数配对时,准确率达到0.938,灵敏度为0.921,精确率为0.955,特异性为0.958,F1分数为0.930,AUC为0.94。我们在其他模型中也观察到了同样出色的性能。此外,通过对30个交叉验证样本的数据集进行评估,证实了我们方法的稳健性,证明了其可推广性。这些发现强调了连体网络中基于非线性和相关性的距离函数在提高乳房X光图像分析性能和可推广性方面的有效性。本文使用的所有代码可在https://github.com/NabaviLab/Benchmarking_Distance_Functions_in_Siamese_Networks上获取。