Zhou Ligang, Liu Minghui, Hu Xia, Wang Laishuan, Xu Yan, Chen Chen, Chen Wei
School of Information Science and TechnologyFudan University Shanghai 200433 China.
Human Phenome InstituteFudan University Shanghai 201203 China.
IEEE Open J Eng Med Biol. 2025 Mar 5;6:459-464. doi: 10.1109/OJEMB.2025.3548002. eCollection 2025.
To develop a high-performance and robust solution for neonatal sleep staging that incorporates spatial topological information and functional connectivity of the brain, which are often overlooked in existing approaches. We propose MVBNSleepNet, a multi-view brain network-based convolutional neural network. The framework integrates a multi-view brain network (MVBN) to characterize brain functional connectivity from linear temporal correlation, information-theoretic, and phase-dynamics perspectives, providing comprehensive spatial topological information. A masking mechanism is employed to enhance model robustness by simulating random dropout or low-quality signal conditions. Additionally, an attention mechanism focuses on key regions of the brain network and reveals structural brain connectivity during sleep, while a CNN module extracts spatial features from brain networks and classifies them into specific sleep stages. The model was validated on a clinical dataset of 64 neonatal EEG recordings using a leave-one-subject-out validation strategy. MVBNSleepNet achieved an accuracy of 83.9% in the two-stage sleep task (sleep and wakefulness) and 76.4% in the three-stage task (active sleep, quiet sleep, and wakefulness), outperforming state-of-the-art methods. The proposed MVBNSleepNet provides a robust and accurate solution for neonatal sleep staging and offers valuable insights into the functional connectivity of the early neural system.
为了开发一种高性能且强大的新生儿睡眠分期解决方案,该方案纳入了空间拓扑信息和大脑功能连接性,而这些在现有方法中常常被忽视。我们提出了MVBNSleepNet,一种基于多视图脑网络的卷积神经网络。该框架集成了一个多视图脑网络(MVBN),从线性时间相关性、信息论和相位动力学角度表征脑功能连接性,提供全面的空间拓扑信息。采用一种掩码机制,通过模拟随机失活或低质量信号条件来增强模型的鲁棒性。此外,一种注意力机制聚焦于脑网络的关键区域,并揭示睡眠期间的脑结构连接性,而一个卷积神经网络模块从脑网络中提取空间特征并将其分类为特定的睡眠阶段。该模型在一个包含64份新生儿脑电图记录的临床数据集上,采用留一受试者验证策略进行了验证。MVBNSleepNet在两阶段睡眠任务(睡眠和清醒)中达到了83.9%的准确率,在三阶段任务(主动睡眠、安静睡眠和清醒)中达到了76.4%的准确率,优于现有最先进的方法。所提出的MVBNSleepNet为新生儿睡眠分期提供了一种强大且准确的解决方案,并为早期神经系统的功能连接性提供了有价值的见解。