Wang Jiaxin, Tian Binbin, Cheng Ye, Gao Shiyu, Ou Encai, Li Huan, Rong Junfeng
College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
Research Centre of Renewable Energy, Sinopec Research Institute of Petroleum Processing, Beijing, 100083, P. R. China.
ChemSusChem. 2025 Jul 27;18(15):e202500787. doi: 10.1002/cssc.202500787. Epub 2025 Jun 29.
Although energy storage devices have made great progress in recent years, their electrode materials still face some problems, such as the lack of high-power and high rate performance in lithium battery materials, and poor energy density in capacitor materials. Here, we utilizes polyacrylonitrile (PAN) alcoholysis derivatives as a carbon source to prepare hierarchical porous carbon with a high specific surface area, and employ freeze-expansion method to increase pore size and improve its high magnification performance. The final hierarchical porous carbon material has high specific surface area (2941 m g) and rich N/O doping. The porou carbon applied in supercapacitors exhibits high-rate performance (200.5 F g at 100 A g), high energy density (12.61 Wh kg at 150 W kg) and excellent stability in symmetric supercapacitors. Furthermore, it owns high energy density (120.9 Wh kg at 160 W kg-1) in a zinc-ion hybrid capacitors. The excellent electrochemical performance is further demonstrated by in situ electrochemical quartz crystal microbalance and ex situ characterizations. The PAN alcoholysis and freeze-expanded methes provides a novel strategies for the preparing of hierarchical porous carbon based on PAN, and a new insights to expand the pore size of porous carbon.
尽管近年来储能设备取得了很大进展,但其电极材料仍面临一些问题,例如锂电池材料缺乏高功率和高倍率性能,以及电容器材料的能量密度较低。在此,我们利用聚丙烯腈(PAN)醇解衍生物作为碳源制备具有高比表面积的分级多孔碳,并采用冷冻膨胀法增加孔径并改善其高倍率性能。最终的分级多孔碳材料具有高比表面积(2941 m²/g)和丰富的N/O掺杂。应用于超级电容器的多孔碳在对称超级电容器中表现出高倍率性能(在100 A/g时为200.5 F/g)、高能量密度(在功率密度为150 W/kg时为12.61 Wh/kg)和优异的稳定性。此外,它在锌离子混合电容器中具有高能量密度(在功率密度为160 W/kg时为120.9 Wh/kg)。原位电化学石英晶体微天平及非原位表征进一步证明了其优异的电化学性能。PAN醇解和冷冻膨胀方法为基于PAN制备分级多孔碳提供了新策略,并为扩大多孔碳孔径提供了新见解。