Suppr超能文献

机器学习自杀风险模型在美国印第安人群体中的表现。

Performance of Machine Learning Suicide Risk Models in an American Indian Population.

机构信息

Center for Indigenous Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.

Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.

出版信息

JAMA Netw Open. 2024 Oct 1;7(10):e2439269. doi: 10.1001/jamanetworkopen.2024.39269.

Abstract

IMPORTANCE

Few suicide risk identification tools have been developed specifically for American Indian and Alaska Native populations, even though these populations face the starkest suicide-related inequities.

OBJECTIVE

To examine the accuracy of existing machine learning models in a majority American Indian population.

DESIGN, SETTING, AND PARTICIPANTS: This prognostic study used secondary data analysis of electronic health record data collected from January 1, 2017, to December 31, 2021. Existing models from the Mental Health Research Network (MHRN) and Vanderbilt University (VU) were fitted. Models were compared with an augmented screening indicator that included any previous attempt, recent suicidal ideation, or a recent positive suicide risk screen result. The comparison was based on the area under the receiver operating characteristic curve (AUROC). The study was performed in partnership with a tribe and local Indian Health Service (IHS) in the Southwest. All patients were 18 years or older with at least 1 encounter with the IHS unit during the study period. Data were analyzed between October 6, 2022, and July 29, 2024.

EXPOSURES

Suicide attempts or deaths within 90 days.

MAIN OUTCOMES AND MEASURES

Model performance was compared based on the ability to distinguish between those with a suicide attempt or death within 90 days of their last IHS visit with those without this outcome.

RESULTS

Of 16 835 patients (mean [SD] age, 40.0 [17.5] years; 8660 [51.4%] female; 14 251 [84.7%] American Indian), 324 patients (1.9%) had at least 1 suicide attempt, and 37 patients (0.2%) died by suicide. The MHRN model had an AUROC value of 0.81 (95% CI, 0.77-0.85) for 90-day suicide attempts, whereas the VU model had an AUROC value of 0.68 (95% CI, 0.64-0.72), and the augmented screening indicator had an AUROC value of 0.66 (95% CI, 0.63-0.70). Calibration was poor for both models but improved after recalibration.

CONCLUSION AND RELEVANCE

This prognostic study found that existing risk identification models for suicide prevention held promise when applied to new contexts and performed better than relying on a combined indictor of a positive suicide risk screen result, history of attempt, and recent suicidal ideation.

摘要

重要性

尽管美国印第安人和阿拉斯加原住民面临着最严重的与自杀相关的不平等问题,但针对这些人群开发的自杀风险识别工具却寥寥无几。

目的

在一个以美国印第安人为主体的人群中,研究现有的机器学习模型的准确性。

设计、设置和参与者:这是一项预后研究,使用了 2017 年 1 月 1 日至 2021 年 12 月 31 日期间从电子健康记录中收集的二级数据分析。拟合了来自心理健康研究网络(MHRN)和范德比尔特大学(VU)的现有模型。使用包括任何先前的尝试、最近的自杀意念或最近的阳性自杀风险筛查结果的增强筛查指标来比较模型。比较的依据是接收者操作特征曲线下的面积(AUROC)。这项研究是与西南部的一个部落和当地印第安人健康服务部(IHS)合作进行的。所有患者年龄均在 18 岁或以上,在研究期间至少有一次与 IHS 单位的接触。数据于 2022 年 10 月 6 日至 2024 年 7 月 29 日进行分析。

暴露

90 天内自杀未遂或死亡。

主要结果和措施

根据区分最后一次 IHS 就诊后 90 天内有自杀未遂或死亡的患者与无此结果的患者的能力,比较模型的性能。

结果

在 16835 名患者中(平均[标准差]年龄,40.0[17.5]岁;8660[51.4%]为女性;14251[84.7%]为美国印第安人),324 名患者(1.9%)至少有 1 次自杀未遂,37 名患者(0.2%)自杀死亡。MHRN 模型的 90 天自杀未遂 AUROC 值为 0.81(95%CI,0.77-0.85),VU 模型的 AUROC 值为 0.68(95%CI,0.64-0.72),增强的筛查指标的 AUROC 值为 0.66(95%CI,0.63-0.70)。这两种模型的校准效果都很差,但在重新校准后都有所改善。

结论和相关性

这项预后研究发现,用于预防自杀的现有风险识别模型在应用于新环境时具有一定的前景,并且比依靠阳性自杀风险筛查结果、尝试史和最近自杀意念的综合指标表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ad/11474420/b515c85c48e6/jamanetwopen-e2439269-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验