Suppr超能文献

在电子健康记录中查找隐藏的基因检测结果效率低下,且各机构之间存在差异。

Finding buried genetic test results in the electronic health record is inefficient and variable across institutions.

作者信息

Veatch Olivia J, Mathew Jomol, Rockowitz Shira, Baldridge Dustin, Wetzel Alyssa, Niarchou Maria, Clarke Megan, Shankar Prabhu, Shankar Suma, Cohen Julie S, German Kendell, Berger Seth, Sellitto Angela, Oh Inez Y, Raizada Rashi, Sliz Piotr, Soby Selvin, Kaplarevic Mihailo, Doherty Dan, Gropman Andrea, Smith-Hicks Constance, Neul Jeffrey L, Lanzotti Virginia, Darbro Benjamin, Chang Qiang, Sahin Mustafa, Chopra Maya

机构信息

University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 4015, Kansas City, KS 66160-8500, USA.

University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Ther Adv Rare Dis. 2025 Jul 11;6:26330040251356521. doi: 10.1177/26330040251356521. eCollection 2025 Jan-Dec.

Abstract

BACKGROUND

The absence of standardized approaches for handling genetic test results in electronic health records (EHRs), combined with a lack of diagnostic codes for most rare disorders, hinders accurate and timely identification of patients with rare genetic variants. This impedes access to research opportunities and genomic-driven care. To reduce the diagnostic odyssey, identify research-eligible subjects, and ultimately enhance patient care, it is critical to optimize approaches to retrieve genetic results.

OBJECTIVES

To characterize resource requirements, yield, and biases among methods for identifying and retrieving genetic test results across 11 Intellectual and Developmental Disability Research Centers (IDDRC).

DESIGN

A survey was used to collect details from the authors on approaches to identify EHRs from patients who had genetic testing and variants of interest were reported; surveys were completed in 2022.

METHODS

Strengths and limitations in approaches to identify and retrieve genetic test results conducted from the implementation of EHR systems were evaluated. A standard template was used to collect genetic testing storage formats, methods to identify patients with rare disease variants, estimates of time/cost, nature of accessed data, method-specific bias in types of American College of Medical Genetics and Genomics classified variants identified. When possible, precision when performing gene name searches in the EHR was calculated.

RESULTS

Four approaches were used: (1) manual searches, reviews, and extractions, (2) natural language processing software-aided manual reviews and extractions, (3) custom databases via testing lab collaborations, and (4) testing EHR vendor-designed genomics modules. The fully manual approach required minimal infrastructure and allowed access to clinical notes but missed variants of unknown clinical significance. Precision for gene name matches based on searches of 59 genes was 0.16. Natural language processing software minimized effort but required considerable informatics support. Custom databases and EHR vendor modules necessitated substantial computational support; however, genetic testing results retrieval was efficient.

CONCLUSION

Leveraging the IDDRC network, we found that methods to store, search and extract genetic testing results vary widely, especially regarding older test results, and have distinct benefits and limitations. Limitations are best addressed through practice guidelines that standardize storage and retrieval of genetic test results to facilitate efficient identification of research eligible subjects and genomic-informed patient care.

摘要

背景

电子健康记录(EHR)中缺乏处理基因检测结果的标准化方法,再加上大多数罕见疾病缺乏诊断编码,阻碍了对携带罕见基因变异患者的准确及时识别。这妨碍了获得研究机会和基于基因组学的医疗服务。为了减少诊断过程中的曲折,识别符合研究条件的受试者,并最终改善患者护理,优化检索基因结果的方法至关重要。

目的

描述11个智力和发育障碍研究中心(IDDRC)在识别和检索基因检测结果的方法中的资源需求、产出和偏差。

设计

采用一项调查从作者处收集有关从进行了基因检测且报告了感兴趣变异的患者中识别EHR的方法的详细信息;调查于2022年完成。

方法

评估了从EHR系统实施中识别和检索基因检测结果的方法的优点和局限性。使用标准模板收集基因检测存储格式、识别患有罕见疾病变异患者的方法、时间/成本估计、所访问数据的性质、美国医学遗传学与基因组学学会分类的已识别变异类型中的方法特异性偏差。在可能的情况下,计算在EHR中进行基因名称搜索时的精确率。

结果

使用了四种方法:(1)手动搜索、审查和提取,(2)自然语言处理软件辅助的手动审查和提取,(3)通过与检测实验室合作建立的定制数据库,以及(4)测试EHR供应商设计的基因组学模块。完全手动的方法所需基础设施最少,可访问临床记录,但会遗漏临床意义不明的变异。基于对59个基因的搜索,基因名称匹配的精确率为0.16。自然语言处理软件减少了工作量,但需要大量信息学支持。定制数据库和EHR供应商模块需要大量计算支持;然而,基因检测结果检索效率很高。

结论

利用IDDRC网络,我们发现存储、搜索和提取基因检测结果的方法差异很大,尤其是对于较旧的检测结果,并且有明显的优点和局限性。最好通过实践指南来解决这些局限性,该指南可标准化基因检测结果的存储和检索,以促进有效识别符合研究条件的受试者和基于基因组学的患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/900a/12254648/a90bdcc40077/10.1177_26330040251356521-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验