Suppr超能文献

鉴定与致病性获得功能和丧失功能变异相关的有区别的基因水平和蛋白质水平特征。

Identification of discriminative gene-level and protein-level features associated with pathogenic gain-of-function and loss-of-function variants.

机构信息

Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

Am J Hum Genet. 2021 Dec 2;108(12):2301-2318. doi: 10.1016/j.ajhg.2021.10.007. Epub 2021 Nov 10.

Abstract

Identifying whether a given genetic mutation results in a gene product with increased (gain-of-function; GOF) or diminished (loss-of-function; LOF) activity is an important step toward understanding disease mechanisms because they may result in markedly different clinical phenotypes. Here, we generated an extensive database of documented germline GOF and LOF pathogenic variants by employing natural language processing (NLP) on the available abstracts in the Human Gene Mutation Database. We then investigated various gene- and protein-level features of GOF and LOF variants and applied machine learning and statistical analyses to identify discriminative features. We found that GOF variants were enriched in essential genes, for autosomal-dominant inheritance, and in protein binding and interaction domains, whereas LOF variants were enriched in singleton genes, for protein-truncating variants, and in protein core regions. We developed a user-friendly web-based interface that enables the extraction of selected subsets from the GOF/LOF database by a broad set of annotated features and downloading of up-to-date versions. These results improve our understanding of how variants affect gene/protein function and may ultimately guide future treatment options.

摘要

确定给定的基因突变是否导致基因产物活性增加(功能获得;GOF)或减少(功能丧失;LOF)是理解疾病机制的重要步骤,因为它们可能导致明显不同的临床表型。在这里,我们通过对人类基因突变数据库中可用摘要进行自然语言处理(NLP),生成了一个广泛的记录在案的种系 GOF 和 LOF 致病性变异的数据库。然后,我们研究了 GOF 和 LOF 变异的各种基因和蛋白质水平特征,并应用机器学习和统计分析来识别有区别的特征。我们发现,GOF 变异在必需基因中富集,呈常染色体显性遗传,在蛋白质结合和相互作用域中富集,而 LOF 变异在单基因中富集,在截断蛋白变异中富集,在蛋白质核心区域中富集。我们开发了一个用户友好的基于网络的界面,该界面允许通过一组广泛的注释特征从 GOF/LOF 数据库中提取选定的子集,并下载最新版本。这些结果提高了我们对变异如何影响基因/蛋白质功能的理解,并可能最终指导未来的治疗选择。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验