Larralde Martin, Zeller Georg, Carroll Laura M
Structural and Computational Biology Unit, EMBL, 69117 Heidelberg, Germany.
Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333ZA Leiden, Netherlands.
NAR Genom Bioinform. 2025 Jul 11;7(3):lqaf095. doi: 10.1093/nargab/lqaf095. eCollection 2025 Sep.
The average nucleotide identity (ANI) metric has become the gold standard for prokaryotic species delineation in the genomics era. The most popular ANI algorithms are available as command-line tools and/or web applications, making it inconvenient to incorporate them into bioinformatic workflows, which utilize the popular Python programming language. Here, we present PyOrthoANI, PyFastANI, and Pyskani, Python libraries for three popular ANI computation methods. ANI values produced by PyOrthoANI, PyFastANI, and Pyskani are virtually identical to those produced by OrthoANI, FastANI, and skani, respectively (adjusted 0.999). Compared to OrthoANI, PyOrthoANI is, on average, 3× faster per genome, while PyFastANI has multithreading support for single queries. All three libraries integrate seamlessly with BioPython, making it easy and convenient to use, compare, and benchmark popular ANI algorithms within Python-based bioinformatic workflows, software programs, and notebooks. Each library is available as part of the Python Package Index repository under the open-source MIT license, with source code available via GitHub (PyOrthoANI, https://github.com/althonos/orthoani; PyFastANI, https://github.com/althonos/pyfastani; Pyskani, https://github.com/althonos/pyskani).
在基因组学时代,平均核苷酸一致性(ANI)指标已成为原核生物物种划分的金标准。最流行的ANI算法以命令行工具和/或网络应用程序的形式提供,这使得将它们纳入利用流行的Python编程语言的生物信息工作流程变得不方便。在这里,我们展示了用于三种流行ANI计算方法的Python库PyOrthoANI、PyFastANI和Pyskani。由PyOrthoANI、PyFastANI和Pyskani产生的ANI值实际上分别与由OrthoANI、FastANI和skani产生的值相同(调整后 0.999)。与OrthoANI相比,PyOrthoANI平均每个基因组快3倍,而PyFastANI对单个查询具有多线程支持。所有这三个库都与BioPython无缝集成,使得在基于Python的生物信息工作流程、软件程序和笔记本中使用、比较和基准测试流行的ANI算法变得轻松便捷。每个库都作为Python包索引存储库的一部分,在开源的麻省理工学院许可下可用,源代码可通过GitHub获取(PyOrthoANI,https://github.com/althonos/orthoani;PyFastANI,https://github.com/althonos/pyfastani;Pyskani,https://github.com/althonos/pyskani)。