Suppr超能文献

利用大型语言模型为患者匹配临床试验。

Matching patients to clinical trials with large language models.

机构信息

National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, USA.

Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL, USA.

出版信息

Nat Commun. 2024 Nov 18;15(1):9074. doi: 10.1038/s41467-024-53081-z.

Abstract

Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT.

摘要

患者招募对临床试验来说具有挑战性。我们引入了 TrialGPT,这是一种端到端的零样本患者与试验匹配的大型语言模型框架。TrialGPT 由三个模块组成:首先进行大规模筛选以检索候选试验(TrialGPT-Retrieval);然后预测标准级别的患者资格(TrialGPT-Matching);最后生成试验级别的评分(TrialGPT-Ranking)。我们在三个包含超过 75000 个试验注释的 183 名合成患者队列上评估了 TrialGPT。TrialGPT-Retrieval 可以使用不到初始集合的 6%召回超过 90%的相关试验。对 1015 对患者标准对的手动评估表明,TrialGPT-Matching 以忠实的解释达到了 87.3%的准确性,接近专家表现。TrialGPT-Ranking 评分与人类判断高度相关,在排名和排除试验方面比最佳竞争模型高出 43.8%。此外,我们的用户研究表明,TrialGPT 可以将患者招募的筛选时间减少 42.6%。总的来说,这些结果表明,使用 TrialGPT 进行患者与试验匹配具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f84b/11574183/001406239cb1/41467_2024_53081_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验