Suppr超能文献

使用统计参数映射和弧长重新参数化对多变量生物力学响应进行假设检验。

Hypothesis Testing of Multivariate Biomechanical Responses using Statistical Parametric Mapping and Arc-Length Re-parameterization.

作者信息

Hartlen Devon C, Cronin Duane S

机构信息

Department of Mechanical and Mechatronic Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.

出版信息

Ann Biomed Eng. 2025 Jul 14. doi: 10.1007/s10439-025-03788-x.

Abstract

Detection of differences between experimental biomechanical datasets is critical to quantify effects and their significance. Many forms of biomechanical data are continuous and multivariate in nature, yet contemporary statistical analysis and hypothesis testing most often utilize single-value scalar metrics. However, reducing continuous responses to single-value scalar metrics can introduce bias and eliminate much of the physical context of a response. This study proposes a methodology to perform hypothesis testing directly on continuous multivariate experimental datasets. The methodology couples arc-length re-parameterization with statistical parametric mapping (SPM) to provide a general framework that can be applied to many of the response types found in biomechanics, including sets of responses that do not terminate at a common coordinate or are hysteretic, such as load-unload data. The arc-length-based SPM methodology was applied to three literature datasets representing a cross-section of the types of responses encountered in biomechanics. In each case, the arc-length-based SPM methodology produced results that agreed with contemporary statistical techniques while providing quantification and identification of statistically significant differences between the datasets. The proposed method provided important contextual information and a deeper understanding of the underlying behavior of a dataset that would otherwise be missed using contemporary single-value scalar metric statistical techniques, such as highlighting specific response features that drive differences between datasets.

摘要

检测实验生物力学数据集之间的差异对于量化效应及其显著性至关重要。许多形式的生物力学数据本质上是连续且多变量的,然而当代统计分析和假设检验大多使用单值标量指标。但是,将连续响应简化为单值标量指标可能会引入偏差并消除响应的许多物理背景。本研究提出了一种直接对连续多变量实验数据集进行假设检验的方法。该方法将弧长重新参数化与统计参数映射(SPM)相结合,以提供一个通用框架,该框架可应用于生物力学中发现的许多响应类型,包括那些在公共坐标处不终止或具有滞后性的响应集,如加载-卸载数据。基于弧长的SPM方法应用于三个文献数据集,这些数据集代表了生物力学中遇到的响应类型的一个横截面。在每种情况下,基于弧长的SPM方法产生的结果与当代统计技术一致,同时提供了数据集之间统计显著差异的量化和识别。所提出的方法提供了重要的背景信息,并对数据集的潜在行为有了更深入的理解,而使用当代单值标量指标统计技术则会错过这些信息,例如突出显示驱动数据集之间差异的特定响应特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验