Suppr超能文献

整合心率变异性可改善基于机器学习的惊恐障碍症状严重程度预测。

Integrating Heart Rate Variability Improves Machine Learning-based Prediction of Panic Disorder Symptom Severity.

作者信息

Lee Jin Goo, Kim Jae-Jin, Seok Jeong-Ho, Kim Eunjoo, Oh Jooyoung, Bang Chang-Bae, Kim Byung-Hoon

机构信息

Eulji University College of Medicine, Daejeon, Korea.

Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Korea.

出版信息

Clin Psychopharmacol Neurosci. 2025 Aug 31;23(3):400-410. doi: 10.9758/cpn.24.1261. Epub 2025 Mar 25.

Abstract

OBJECTIVE

The association between panic disorder (PD) and heart rate variability (HRV) has long been studied with a focus on the imbalance of the autonomic nervous system. This study aims to demonstrate the predictive capability of HRV in determining PD severity using machine learning.

METHODS

Psychometric scales and various HRV components were measured from 507 PD patients who were recruited. We designed three experiments with different sets of input features for comparison. The input features of each experiment were 1) both psychometric scales and HRV together (ExSH), or 2) only the scales (ExS), or 3) only the HRV components. In each experiment, nine machine learning models were used to predict the Panic Disorder Severity Scale. We compared the predictive capability of the three sets of input features by statistically analyzing the performance metrics of the models in the three experiments. SHapley Additive exPlanation (SHAP) was further employed to assess the importance of the input features.

RESULTS

The Random Forest model in ExSH, which incorporated both psychometric scales and HRV, achieved the highest f1-score (76.50%) and sensitivity (75.35%). ExSH showed significantly higher sensitivity and f1-score compared to ExS. For the RF model of ExSH, the highest SHAP importance value was found for the Hamilton Rating Scale for Anxiety, followed by the Hamilton Depression Rating Scale, and the low-frequency power (LF).

CONCLUSION

Our findings demonstrate that integrating HRV with psychometric scales improves machine learning-based prediction of PD severity. We also highlighted LF as a promising variable among HRV components.

摘要

目的

惊恐障碍(PD)与心率变异性(HRV)之间的关联长期以来一直是研究重点,主要关注自主神经系统的失衡。本研究旨在利用机器学习证明HRV在确定PD严重程度方面的预测能力。

方法

对招募的507名PD患者测量了心理测量量表和各种HRV成分。我们设计了三个实验,使用不同的输入特征集进行比较。每个实验的输入特征分别为:1)心理测量量表和HRV两者(ExSH),或2)仅量表(ExS),或3)仅HRV成分。在每个实验中,使用九个机器学习模型来预测惊恐障碍严重程度量表。我们通过统计分析三个实验中模型的性能指标,比较了三组输入特征的预测能力。进一步采用SHapley加法解释(SHAP)来评估输入特征的重要性。

结果

结合心理测量量表和HRV的ExSH中的随机森林模型获得了最高的F1分数(76.50%)和灵敏度(75.35%)。与ExS相比,ExSH显示出显著更高的灵敏度和F1分数。对于ExSH的随机森林模型,焦虑汉密尔顿评定量表的SHAP重要性值最高,其次是抑郁汉密尔顿评定量表和低频功率(LF)。

结论

我们的研究结果表明,将HRV与心理测量量表相结合可改善基于机器学习的PD严重程度预测。我们还强调了LF是HRV成分中有前景的变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8c1/12264673/4747eaa4786c/cpn-23-3-400-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验