Nguyen Duy, Hoang Ca, Truong Tien, Nguyen Dang, Lam Hillary Gia, Sharma Abhay, Le Trung Quoc, Huynh Phat Kim
Department of Industrial and Systems Engineering, North Carolina A&T State University, Greensboro, North Carolina, United States of America.
Department of Industrial and Management Systems Engineering, University of South Florida, Tampa, Florida, United States of America.
PLoS One. 2025 Jul 15;20(7):e0327977. doi: 10.1371/journal.pone.0327977. eCollection 2025.
Cardiovascular diseases (CVDs) are prevalent among obstructive sleep apnea (OSA) patients, presenting significant challenges in predictive modeling due to the complex interplay of these comorbidities. Current methodologies predominantly lack the dynamic and longitudinal perspective necessary to accurately predict CVD progression in the presence of OSA. This study addresses these limitations by proposing a novel multi-level phenotypic model that analyzes the progression and interaction of these comorbidities over time. Our study utilizes a longitudinal cohort from the Wisconsin sleep cohort, consisting of 1,123 participants, tracked over several decades. The methodology consists of three advanced steps to capture the relationships between these comorbid conditions: (1) performing feature importance analysis using tree-based models to highlight the predominant role of variables in predicting CVD outcomes. (2) developing a logistic mixed-effects model (LGMM) to identify longitudinal transitions and their significant factors, enabling detailed tracking of individual trajectories; (3) and utilizing t-distributed stochastic neighbor embedding (t-SNE) combined with Gaussian mixture models (GMM) to classify patient data into distinct phenotypic clusters. In the analysis of feature importance, clinical indicators such as total cholesterol, low-density lipoprotein, and diabetes emerged as the top predictors, highlighting their significant roles in CVD onset and progression. The LGMM predictive models exhibited a high diagnostic accuracy with an aggregate accuracy of 0.9556. The phenotypic analysis yielded two distinct clusters, each corresponding to unique risk profiles and disease progression pathways. One cluster notably carried a higher risk for major adverse cardiovascular events (MACEs), attributed to key factors like nocturnal hypoxia and sympathetic activation. Analysis using t-SNE and GMM confirmed these phenotypes, which marked differences in progression rates between the clusters. In conclusion, our study provides a profound understanding of the dynamic OSA-CVD interactions, offering robust tools for predicting CVD onset and informing personalized treatment strategies.
心血管疾病(CVDs)在阻塞性睡眠呼吸暂停(OSA)患者中很常见,由于这些合并症之间复杂的相互作用,在预测模型方面提出了重大挑战。当前的方法主要缺乏在存在OSA的情况下准确预测CVD进展所需的动态和纵向视角。本研究通过提出一种新颖的多层次表型模型来解决这些局限性,该模型分析这些合并症随时间的进展和相互作用。我们的研究利用了来自威斯康星睡眠队列的纵向队列,该队列由1123名参与者组成,经过数十年的跟踪。该方法包括三个高级步骤来捕捉这些合并症之间的关系:(1)使用基于树的模型进行特征重要性分析,以突出变量在预测CVD结果中的主要作用。(2)开发逻辑混合效应模型(LGMM)以识别纵向转变及其重要因素,从而能够详细跟踪个体轨迹;(3)利用t分布随机邻域嵌入(t-SNE)与高斯混合模型(GMM)相结合,将患者数据分类为不同的表型簇。在特征重要性分析中,总胆固醇、低密度脂蛋白和糖尿病等临床指标成为首要预测因素,突出了它们在CVD发病和进展中的重要作用。LGMM预测模型表现出较高的诊断准确性,总体准确率为0.9556。表型分析产生了两个不同的簇,每个簇对应独特的风险特征和疾病进展途径。其中一个簇明显具有更高的主要不良心血管事件(MACEs)风险,这归因于夜间缺氧和交感神经激活等关键因素。使用t-SNE和GMM进行的分析证实了这些表型,这些表型在簇之间的进展率上存在显著差异。总之,我们的研究提供了对动态OSA-CVD相互作用的深刻理解,为预测CVD发病提供了强大工具,并为个性化治疗策略提供了依据。