MRC Laboratory of Molecular Biology, Cambridge, UK.
CZ Imaging Institute, Redwood City, CA, USA.
Nat Methods. 2024 Oct;21(10):1855-1862. doi: 10.1038/s41592-024-02377-5. Epub 2024 Aug 9.
How to deal with continuously flexing molecules is one of the biggest outstanding challenges in single-particle analysis of proteins from cryogenic-electron microscopy (cryo-EM) images. Here, we present DynaMight, a software tool that estimates a continuous space of conformations in a cryo-EM dataset by learning three-dimensional deformations of a Gaussian pseudo-atomic model of a consensus structure for every particle image. Inversion of the learned deformations is then used to obtain an improved reconstruction of the consensus structure. We illustrate the performance of DynaMight for several experimental cryo-EM datasets. We also show how error estimates on the deformations may be obtained by independently training two variational autoencoders on half sets of the cryo-EM data, and how regularization of the three-dimensional deformations through the use of atomic models may lead to important artifacts due to model bias. DynaMight is distributed as free, open-source software, as part of RELION-5.
如何处理不断弯曲的分子是从低温电子显微镜(cryo-EM)图像中单颗粒分析蛋白质的最大挑战之一。在这里,我们介绍了 DynaMight,这是一个软件工具,它通过学习高斯伪原子模型对每个粒子图像的共识结构的三维变形,估计 cryo-EM 数据集中的连续构象空间。然后,对学习到的变形进行反演,以获得共识结构的改进重建。我们用几个实验 cryo-EM 数据集来说明 DynaMight 的性能。我们还展示了如何通过在 cryo-EM 数据的一半数据集上独立训练两个变分自动编码器来获得变形的误差估计,以及如何通过使用原子模型对三维变形进行正则化会由于模型偏差而导致重要的伪影。DynaMight 作为免费的开源软件发布,作为 RELION-5 的一部分。