Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
Nat Protoc. 2024 Jul;19(7):2026-2051. doi: 10.1038/s41596-024-00973-5. Epub 2024 Apr 4.
Single-particle cryo-electron microscopy (cryoEM) provides an attractive avenue for advancing our atomic resolution understanding of materials, molecules and living systems. However, the vast majority of published cryoEM methodologies focus on the characterization of aerobically purified samples. Air-sensitive enzymes and microorganisms represent important yet understudied systems in structural biology. We have recently demonstrated the success of an anaerobic single-particle cryoEM workflow applied to the air-sensitive nitrogenase enzymes. In this protocol, we detail the use of Schlenk lines and anaerobic chambers to prepare samples, including a protein tag for monitoring sample exposure to oxygen in air. We describe how to use a plunge freezing apparatus inside of a soft-sided vinyl chamber of the type we routinely use for anaerobic biochemistry and crystallography of oxygen-sensitive proteins. Manual control of the airlock allows for introduction of liquid cryogens into the tent. A custom vacuum port provides slow, continuous evacuation of the tent atmosphere to avoid accumulation of flammable vapors within the enclosed chamber. These methods allowed us to obtain high-resolution structures of both nitrogenase proteins using single-particle cryoEM. The procedures involved can be generally subdivided into a 4 d anaerobic sample generation procedure, and a 1 d anaerobic cryoEM sample preparation step, followed by conventional cryoEM imaging and processing steps. As nitrogen is a substrate for nitrogenase, the Schlenk lines and anaerobic chambers described in this procedure are operated under an argon atmosphere; however, the system and these procedures are compatible with other controlled gas environments.
单颗粒低温电子显微镜(cryoEM)为推进我们对材料、分子和生命系统的原子分辨率理解提供了一条有吸引力的途径。然而,绝大多数已发表的 cryoEM 方法都集中于有氧条件下纯化样品的特性研究。对空气敏感的酶和微生物是结构生物学中一个重要但研究不足的系统。我们最近成功地将一种厌氧单颗粒 cryoEM 工作流程应用于对空气敏感的氮酶。在本方案中,我们详细介绍了如何使用 Schlenk 线和厌氧室来制备样品,包括用于监测空气中氧气暴露的蛋白质标签。我们描述了如何在我们常规用于厌氧生物化学和氧气敏感蛋白结晶的软边乙烯基室内部使用压入式冷冻设备。手动控制气闸允许将液体冷冻剂引入帐篷中。定制的真空端口提供帐篷气氛的缓慢、连续排气,以避免封闭室内可燃蒸气的积累。这些方法使我们能够使用单颗粒 cryoEM 获得氮酶蛋白的高分辨率结构。所涉及的程序通常可分为 4 天的厌氧样品生成程序和 1 天的厌氧 cryoEM 样品制备步骤,然后进行常规 cryoEM 成像和处理步骤。由于氮是氮酶的底物,因此本程序中描述的 Schlenk 线和厌氧室在氩气气氛下操作;然而,该系统和这些程序与其他受控气体环境兼容。