Suppr超能文献

用于评估半野生马在草原生态系统中进行的不同活动水平的人工智能工具。

Artificial intelligence tools to assess different levels of activity performed by semi-wild horses in grassland ecosystems.

作者信息

Chodkiewicz Anna, Prończuk Martyna, Studnicki Marcin

机构信息

Department of Agronomy, Institute of Agriculture, Warsaw University of Life Sciences, 159 Nowoursynowska Str., 02-776, Warsaw, Poland.

, Warsaw, Poland.

出版信息

Environ Monit Assess. 2025 Jul 16;197(8):922. doi: 10.1007/s10661-025-14363-1.

Abstract

In order to understand the role of horses in ecosystems and to effectively use their grazing in the protection of grasslands, it is important to assess where they primarily stay, followed by whether these habitats are used for grazing or resting. The main goal of the study was the model development based on artificial intelligence tools which allow to distinguish the basic levels of activity performed by horses using data from an accelerometer mounted in a collar worn by animals. The model calibration was based on direct observations of five randomly selected Polish primitive horse mares. In order to create a model that allows for classification into three groups of behaviours: grazing, resting, and moving, an approach based on machine learning, one of the basic technologies of artificial intelligence, was used. The carried out analyses allowed for the determination of the most important features, among the fourteen determined from raw X, Y, and Z axis acceleration values across 5-s measurements. The recommended method for the classification of behaviours of primitive Konik horses based on the selection of variables observed from the accelerometer is the CART method, whereas the most accurate tool for its construction is learning neural networks. Our research indicates the usefulness of the accelerometer and proposed artificial intelligence methods in distinguishing the main activities performed by horses.

摘要

为了了解马在生态系统中的作用,并有效地利用它们的放牧行为来保护草原,评估它们主要停留的地点很重要,其次是这些栖息地是用于放牧还是休息。该研究的主要目标是基于人工智能工具开发模型,该模型能够利用安装在动物佩戴的项圈中的加速度计数据,区分马所进行的基本活动水平。模型校准基于对五匹随机选择的波兰原始母马的直接观察。为了创建一个能够将行为分为放牧、休息和移动三组的模型,采用了基于机器学习的方法,机器学习是人工智能的基本技术之一。通过分析,可以从5秒测量的原始X、Y和Z轴加速度值确定的14个特征中,确定最重要的特征。基于从加速度计观察到的变量选择,对原始科尼克马行为进行分类的推荐方法是CART方法,而构建该模型最准确的工具是学习神经网络。我们的研究表明,加速度计和所提出的人工智能方法在区分马的主要活动方面是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验