Suppr超能文献

使用机器学习对卫生系统恢复力进行预测性评估。

Predictive estimations of health systems resilience using machine learning.

作者信息

Jatobá Alessandro, de Castro-Nunes Paula, Palmieri Paloma, Machado Araujo de Oliveira Omara, Passos Simões Patricia, da Silva Fonseca Valéria, de Carvalho Paulo Victor Rodrigues

机构信息

Centro de Estudos Estratégicos da Fiocruz Antônio Ivo de Carvalho (CEE) - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.

出版信息

BMC Med Inform Decis Mak. 2025 Jul 15;25(1):267. doi: 10.1186/s12911-025-03111-7.

Abstract

Operationalizing resilience in public health systems is critical for enhancing adaptive capacity during crises. This study presents a Machine Learning (ML) -based approach to assess resilience of the health system. Using historical data from Brazilian capitals, based on the World Health Organization's six dimensions of resilient health systems, the study aims to predict responses of the system to stressors. A comprehensive dataset was developed through rigorous data collection and preprocessing, followed by splitting the data into training and testing subsets. Various ML algorithms, including regression models and decision trees, were applied to uncover insights into the resilience of health systems over time. Results revealed significant correlations between key indicators-such as outpatient care and availability of healthcare workforce-and the system's resilience. It was shown that expanding these capacities enhances overall resilience. This research highlights the potential of ML in predictive modeling to inform strategic health decision-making, targeting interventions and more effective resource allocation. This study provides a robust framework for evaluating resilience, offering public health managers a valuable tool to strengthen health systems in the face of emerging challenges.

摘要

在公共卫生系统中实施恢复力对于增强危机期间的适应能力至关重要。本研究提出了一种基于机器学习(ML)的方法来评估卫生系统的恢复力。该研究利用来自巴西首都的历史数据,基于世界卫生组织关于有恢复力的卫生系统的六个维度,旨在预测该系统对应激源的反应。通过严格的数据收集和预处理开发了一个综合数据集,随后将数据分为训练子集和测试子集。应用了包括回归模型和决策树在内的各种机器学习算法,以揭示卫生系统恢复力随时间的变化情况。结果显示,关键指标(如门诊护理和医疗劳动力的可用性)与系统恢复力之间存在显著相关性。结果表明,扩大这些能力可增强整体恢复力。本研究强调了机器学习在预测建模中的潜力,可为战略卫生决策、有针对性的干预措施和更有效的资源分配提供信息。本研究提供了一个评估恢复力的强大框架,为公共卫生管理人员提供了一个宝贵工具,以在面对新出现的挑战时加强卫生系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验