Suppr超能文献

PSSR2:一个便于用户使用的Python软件包,用于使基于深度学习的点扫描超分辨率显微镜技术更普及。

PSSR2: a user-friendly Python package for democratizing deep learning-based point-scanning super-resolution microscopy.

作者信息

Stites Hayden C, Manor Uri

机构信息

Department of Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego 92093, CA, USA.

Halıcıoğlu Data Science Institute, University of California, San Diego 92093, CA, USA.

出版信息

BMC Methods. 2025;2. doi: 10.1186/s44330-024-00020-5. Epub 2025 Jan 2.

Abstract

BACKGROUND

To address the limitations of large-scale high quality microscopy image acquisition, PSSR (Point-Scanning Super-Resolution) was introduced to enhance easily acquired low quality microscopy data to a higher quality using deep learning-based methods. However, while PSSR was released as open-source, it was difficult for users to implement into their workflows due to an outdated codebase, limiting its usage by prospective users. Additionally, while the data enhancements provided by PSSR were significant, there was still potential for further improvement.

METHODS

To overcome this, we introduce PSSR2, a redesigned implementation of PSSR workflows and methods built to put state-of-the-art technology into the hands of the general microscopy and biology research community. PSSR2 enables user-friendly implementation of super-resolution workflows for simultaneous super-resolution and denoising of undersampled microscopy data, especially through its integrated Command Line Interface and Napari plugin. PSSR2 improves and expands upon previously established PSSR algorithms, mainly through improvements in the semi-synthetic data generation ("crappification") and training processes.

RESULTS

In benchmarking PSSR2 on a test dataset of paired high and low resolution electron microscopy images, PSSR2 super-resolves high-resolution images from low-resolution images to a significantly higher accuracy than PSSR. The super-resolved images are also more visually representative of real-world high-resolution images.

DISCUSSION

The improvements in PSSR2, in providing higher quality images, should improve the performance of downstream analyses. We note that for accurate super-resolution, PSSR2 models should only be applied to super-resolve data sufficiently similar to training data and should be validated against real-world ground truth data.

摘要

背景

为了解决大规模高质量显微镜图像采集的局限性,引入了点扫描超分辨率(PSSR)技术,以利用基于深度学习的方法将容易获取的低质量显微镜数据提升至更高质量。然而,尽管PSSR作为开源软件发布,但由于代码库过时,用户难以将其应用到工作流程中,这限制了潜在用户的使用。此外,虽然PSSR提供的数据增强效果显著,但仍有进一步改进的空间。

方法

为克服这一问题,我们引入了PSSR2,它是PSSR工作流程和方法的重新设计实现,旨在将先进技术带给普通显微镜和生物学研究群体。PSSR2实现了超分辨率工作流程的用户友好型应用,可对欠采样显微镜数据同时进行超分辨率和去噪处理,特别是通过其集成的命令行界面和Napari插件。PSSR2改进并扩展了先前已有的PSSR算法,主要是通过改进半合成数据生成(“劣质化”)和训练过程。

结果

在一个由高分辨率和低分辨率电子显微镜图像对组成的测试数据集上对PSSR2进行基准测试时,PSSR2从低分辨率图像中超分辨率重建高分辨率图像的精度显著高于PSSR。超分辨率重建后的图像在视觉上也更能代表真实世界的高分辨率图像。

讨论

PSSR2在提供更高质量图像方面的改进应能提高下游分析的性能。我们注意到,为实现准确的超分辨率,PSSR2模型仅应应用于超分辨率重建与训练数据足够相似的数据,并且应根据真实世界的地面真值数据进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ae/12263091/d5f87cd076dc/nihms-2076659-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验