Dalgarno Audrey, Evans Shane A, Kelsey Maxfield M G, Nunez Thomas A, Rocha Azucena, Clark Kelly, Sedivy John M, Neretti Nicola
Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
Center on the Biology of Aging, Brown University, Providence, RI, USA.
bioRxiv. 2025 Jun 17:2025.06.11.659151. doi: 10.1101/2025.06.11.659151.
Cellular senescence is a stable form of cell cycle arrest that contributes to aging and age-associated diseases through the secretion of inflammatory factors collectively known as the senescence-associated secretory phenotype (SASP). While senescence is driven by transcriptional and epigenetic changes, the contribution of higher-order genome organization remains poorly defined. Here, we present the highest-resolution Hi-C maps (~3 kb) to date of proliferating, quiescent, and replicative senescent (RS) human fibroblasts, enabling a comprehensive analysis of 3D genome architecture during senescence. Our analyses reveal widespread senescence-associated remodeling of chromatin architecture, including extensive compartment and subcompartment switching toward transcriptionally active states, and a dramatic increase in unique chromatin loops. These structural features correlate with local DNA hypomethylation and are largely independent of canonical CTCF binding. The altered 3D genome landscape supports expression of SASP genes, inflammation-related pathways, and neuronal gene signatures consistent with age-associated epigenetic drift. We further demonstrate that architectural changes at multiple levels, including compartments, subcompartments, and loops, facilitate the derepression of LINE-1 retrotransposons, linking 3D chromatin structure to activation of proinflammatory transposable elements. Interestingly, quiescent cells, commonly used as senescence controls, exhibited substantial overlap in inflammatory gene expression with senescent cells, raising important considerations for experimental design. Structural analysis of cell cycle genes showed distinct chromatin configurations in senescence versus quiescence, despite similar transcriptional repression. Together, our results establish a high-resolution framework for understanding how genome architecture contributes to the senescent state.
细胞衰老一种稳定的细胞周期停滞形式,通过分泌统称为衰老相关分泌表型(SASP)的炎性因子,促进衰老和与年龄相关的疾病。虽然衰老由转录和表观遗传变化驱动,但高阶基因组组织的作用仍不清楚。在这里,我们展示了迄今为止分辨率最高的Hi-C图谱(约3 kb),涵盖增殖、静止和复制性衰老(RS)的人类成纤维细胞,从而能够全面分析衰老过程中的三维基因组结构。我们的分析揭示了广泛的衰老相关染色质结构重塑,包括广泛的区室和亚区室向转录活跃状态的转变,以及独特染色质环的显著增加。这些结构特征与局部DNA低甲基化相关,并且在很大程度上独立于经典的CTCF结合。三维基因组景观的改变支持SASP基因、炎症相关途径以及与年龄相关的表观遗传漂移一致的神经元基因特征的表达。我们进一步证明,包括区室、亚区室和环在内的多个水平的结构变化促进了LINE-1逆转录转座子的去抑制,将三维染色质结构与促炎转座元件的激活联系起来。有趣的是,通常用作衰老对照的静止细胞在炎症基因表达上与衰老细胞有大量重叠,这为实验设计提出了重要考虑。细胞周期基因的结构分析表明,尽管转录抑制相似,但衰老细胞与静止细胞的染色质构型不同。总之,我们的结果建立了一个高分辨率框架,用于理解基因组结构如何促成衰老状态。