Mancilla Moreno Marisol, Patel Pooja J, Goss Kree, Mian Subhaan M, Nakisli Sera, Inturi Nikhil, Shiers Stephanie I, Horton Peter, Cervantes Anna, Funk Geoffrey, Khan Tariq, Vines Erin, Klein Rebecca M, Henze Darrell A, Tavares-Ferreira Diana, Price Theodore J, Yousuf Muhammad Saad
Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080.
Southwest Transplant Alliance, Dallas, TX 75231.
bioRxiv. 2025 Jun 25:2025.06.24.661373. doi: 10.1101/2025.06.24.661373.
The paravertebral sympathetic chain ganglia (SCG) are autonomic ganglia critical for regulating the "fight-or-flight" response. Symptoms of sympathetic dysfunction are prevalent in diabetes, affecting up to 90% of patients. The molecular and cellular composition of the human SCG and its alteration in diabetes remains poorly defined. To address this gap, we performed spatial transcriptomic profiling of lumbar SCGs from diabetic and non-diabetic organ donors. We identified 3 three distinct neuronal populations, two noradrenergic (NA1 and NA2) and one cholinergic (CHO), based on tyrosine hydroxylase () and expression, respectively. We also characterized 9 non-neuronal populations consisting of Schwann cells, immune cells, fibroblasts, adipocytes, and endothelial cells. In diabetic SCGs, we observed a significant loss of myelinating Schwann cells and a phenotypic shift of cholinergic neurons toward a noradrenergic identity. Additionally, diabetes was associated with a significant reduction in the transcripts of vasodilatory neuropeptides, such as and , suggesting a mechanism for impaired vascular control. Upstream regulator analysis highlighted altered neurotrophic signaling in diabetes, with enhanced NGF/TRKA and diminished BDNF/TRKB activity, potentially driven by target-derived cues. Comparison between SCG and dorsal root ganglia (DRG) neurons revealed ganglia-specific genes, like and (SCG) versus and (DRG), offering specific therapeutic targets for autonomic dysfunction or pain. Our findings provide a transcriptomic characterization of human SCG, revealing molecular signatures that underlie diabetic autonomic dysfunction. This work lays a foundation for the development of therapies to restore sympathetic function and avoid unintended autonomic effects in the development of analgesics.
椎旁交感神经链神经节(SCG)是调节“战斗或逃跑”反应的关键自主神经节。交感神经功能障碍的症状在糖尿病患者中很普遍,影响高达90%的患者。人类SCG的分子和细胞组成及其在糖尿病中的变化仍不清楚。为了填补这一空白,我们对糖尿病和非糖尿病器官捐献者的腰椎SCG进行了空间转录组分析。基于酪氨酸羟化酶()和表达,我们分别鉴定出3种不同的神经元群体,两种去甲肾上腺素能(NA1和NA2)和一种胆碱能(CHO)。我们还对由雪旺细胞、免疫细胞、成纤维细胞、脂肪细胞和内皮细胞组成的9种非神经元群体进行了表征。在糖尿病SCG中,我们观察到有髓雪旺细胞显著减少,胆碱能神经元向去甲肾上腺素能表型转变。此外,糖尿病与血管舒张神经肽(如和)转录本的显著减少有关,提示血管控制受损的机制。上游调节因子分析突出了糖尿病中神经营养信号的改变,NGF/TRKA增强而BDNF/TRKB活性减弱,可能由靶源性信号驱动。SCG与背根神经节(DRG)神经元的比较揭示了神经节特异性基因,如(SCG)与(DRG),为自主神经功能障碍或疼痛提供了特定的治疗靶点。我们的研究结果提供了人类SCG的转录组特征,揭示了糖尿病自主神经功能障碍的分子特征。这项工作为开发恢复交感神经功能和避免镇痛药开发中意外自主神经效应的疗法奠定了基础。