Buchinger Quirin, Krause Constantin, Zhang Aileen, Peniakov Giora, Helal Mohamed, Reum Yorick, Pfenning Andreas Theo, Höfling Sven, Huber-Loyola Tobias
Physikalisches Institut, Lehrstuhl für Technische Physik, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, 97074, Deutschland.
University of Arizona, Wyant College of Optical Sciences, 1630 E University Blvd, Tucson Arizona, USA.
Nano Converg. 2025 Jul 16;12(1):36. doi: 10.1186/s40580-025-00501-5.
Single emitters in solid state are promising sources of single and entangled photons. To boost their extraction efficiency and tailor their emission properties, they are often incorporated in photonic nanostructures. However, achieving accurate and reproducible placement inside the cavity is challenging but necessary to ensure the highest mode overlap and optimal device performance. For many cavity types —such as photonic crystal cavities or circular Bragg grating cavities — even small displacements lead to a significantly reduced emitter-cavity coupling. For circular Bragg grating cavities, this yields a significant reduction in Purcell effect, a slight reduction in efficiency and it introduces polarization on the emitted photons. Here we show a method to achieve high accuracy and precision for deterministically placed cavities on the example of circular Bragg gratings on randomly distributed semiconductor quantum dots. We introduce periodic alignment markers for improved marker detection accuracy and investigate overall imaging accuracy achieving (9.1 ± 2.5) nm through image correction. Since circular Bragg grating cavities exhibit a strong polarization response when the emitter is displaced, they are ideal devices to probe the cavity placement accuracy far below the diffraction limit. From the measured device polarizations, we derive a total spatial process accuracy of (33.5 ± 9.9) nm based on the raw data, and an accuracy of (15 ± 11) nm after correcting for the system response, resulting in a device yield of 68% for well-placed cavities.
The online version contains supplementary material available at 10.1186/s40580-025-00501-5
固态单发射体是单光子和纠缠光子的有前景的来源。为了提高它们的提取效率并调整其发射特性,它们通常被整合到光子纳米结构中。然而,在腔内实现精确且可重复的放置具有挑战性,但对于确保最高模式重叠和最佳器件性能是必要的。对于许多腔类型,如光子晶体腔或圆形布拉格光栅腔,即使是小的位移也会导致发射体 - 腔耦合显著降低。对于圆形布拉格光栅腔,这会导致珀塞尔效应显著降低、效率略有降低,并在发射光子上引入偏振。在这里,我们以随机分布的半导体量子点上的圆形布拉格光栅为例,展示了一种实现确定性放置腔的高精度和高精确度的方法。我们引入周期性对准标记以提高标记检测精度,并通过图像校正研究实现了(9.1±2.5)nm的整体成像精度。由于当发射体位移时圆形布拉格光栅腔表现出强烈的偏振响应,它们是探测远低于衍射极限的腔放置精度的理想器件。从测量的器件偏振中,基于原始数据我们得出总空间过程精度为(33.5±9.9)nm,在校正系统响应后精度为(15±11)nm,放置良好的腔的器件成品率为68%。
在线版本包含可在10.1186/s40580 - 025 - 00501 - 5获取的补充材料