Suppr超能文献

SaeGraphDTI:基于序列属性提取和图神经网络的药物-靶点相互作用预测

SaeGraphDTI: drug-target interaction prediction based on sequence attribute extraction and graph neural network.

作者信息

Zhang Qiaosheng, Sun Zhenyu, Zhong Zhaoman, Yang Huihui, Wei Yalong, Xu Junjie

机构信息

School of Computer Engineering, Jiangsu Ocean University, No. 59, Cangwu Road, Haizhou District, Lianyungang, 222000, Jiangsu, China.

Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, No. 59, Cangwu Road, Haizhou District, Lianyungang, 222000, Jiangsu, China.

出版信息

BMC Bioinformatics. 2025 Jul 15;26(1):177. doi: 10.1186/s12859-025-06195-0.

Abstract

BACKGROUND

Accurately identifying drug-target interactions (DTI) can greatly shorten the drug development cycle and reduce the cost of drug development. In current deep learning-based DTI prediction models, the extraction of drug and target features is a key step to improve model performance. At the same time, drugs and targets form a complex relational network, and leveraging existing network topological relationships can obtain more comprehensive feature representations.

RESULTS

We propose a DTI prediction model based on sequence attribute extraction and graph neural networks, named SaeGraphDTI. First, sequence feature extractors are applied to extract relevant properties of drug and target sequences. Then, based on similarity relationships, the existing relational network is supplemented, and the graph encoder updates node information based on this network. Finally, the graph decoder calculates the probability of edge existence to predict DTI. Our model was compared with other state-of-the-art methods on four public datasets and achieved the best results in most key metrics.

CONCLUSION

These results demonstrate the excellent capability of this model in predicting potential DTI, providing a valuable tool for drug development.

摘要

背景

准确识别药物-靶点相互作用(DTI)能够极大地缩短药物研发周期并降低药物研发成本。在当前基于深度学习的DTI预测模型中,药物和靶点特征的提取是提高模型性能的关键步骤。同时,药物和靶点构成一个复杂的关系网络,利用现有的网络拓扑关系可以获得更全面的特征表示。

结果

我们提出了一种基于序列属性提取和图神经网络的DTI预测模型,名为SaeGraphDTI。首先,应用序列特征提取器来提取药物和靶点序列的相关属性。然后,基于相似性关系补充现有的关系网络,图编码器基于此网络更新节点信息。最后,图解码器计算边存在的概率以预测DTI。我们的模型在四个公共数据集上与其他现有最佳方法进行了比较,并在大多数关键指标上取得了最佳结果。

结论

这些结果证明了该模型在预测潜在DTI方面的卓越能力,为药物研发提供了一个有价值的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验