Oyama Henrique, Matsumoto Takazumi, Tani Jun
Cognitive Neurorobotics Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Onna, Japan.
Front Comput Neurosci. 2025 Jul 2;19:1578135. doi: 10.3389/fncom.2025.1578135. eCollection 2025.
Mind-wandering reflects a dynamic interplay between focused attention and off-task mental states. Despite its relevance in understanding fundamental cognitive processes, such as attention regulation, decision-making, and creativity, previous models have not yet provided an account of the neural mechanisms for autonomous shifts between focus state (FS) and mind-wandering (MW). To address this, we conduct model simulation experiments employing predictive coding as a theoretical framework of perception to investigate possible neural mechanisms underlying these autonomous shifts between the two states. In particular, we modeled perception processes of continuous sensory sequences using our previously proposed variational RNN model under free energy minimization. The current study extends this model by introducing an online adaptation mechanism of a meta-level parameter, referred to as the meta-prior , which regulates the complexity term in the free energy minimization. Our simulation experiments demonstrated that autonomous shifts between FS and MW take place when switches between low and high values responding to a decrease and increase of the average reconstruction error over a past time window. Particularly, high prioritized top-down predictions while low emphasized bottom-up sensations. In this work, we speculate that self-awareness of MW may occur when the error signal accumulated over time exceeds a certain threshold. Finally, this paper explores how our experiment results align with existing studies and highlights their potential for future research.
思绪游荡反映了专注注意力和任务无关心理状态之间的动态相互作用。尽管它在理解诸如注意力调节、决策和创造力等基本认知过程方面具有相关性,但先前的模型尚未对焦点状态(FS)和思绪游荡(MW)之间自主转换的神经机制做出解释。为了解决这个问题,我们以预测编码作为感知的理论框架进行模型模拟实验,以研究这两种状态之间自主转换背后可能的神经机制。具体而言,我们在自由能最小化的情况下,使用我们先前提出的变分循环神经网络(RNN)模型对连续感官序列的感知过程进行建模。当前的研究通过引入一个元级参数的在线适应机制来扩展这个模型,这个元级参数被称为元先验,它调节自由能最小化中的复杂性项。我们的模拟实验表明,当在过去时间窗口内对平均重建误差的减少和增加做出响应时,FS和MW之间的自主转换会在低值和高值之间切换时发生。特别地,高值优先考虑自上而下的预测,而低值则强调自下而上的感觉。在这项工作中,我们推测当随时间积累的误差信号超过某个阈值时,可能会出现对MW的自我意识。最后,本文探讨了我们的实验结果如何与现有研究相契合,并突出了它们在未来研究中的潜力。