Suppr超能文献

迈向心理行动的计算现象学:用深度参数主动推理对元意识和注意力控制进行建模。

Towards a computational phenomenology of mental action: modelling meta-awareness and attentional control with deep parametric active inference.

作者信息

Sandved-Smith Lars, Hesp Casper, Mattout Jérémie, Friston Karl, Lutz Antoine, Ramstead Maxwell J D

机构信息

Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon 1 University, 95 Bd Pinel, Lyon 69500, France.

Department of Developmental Psychology, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, Netherlands.

出版信息

Neurosci Conscious. 2021 Aug 27;2021(2):niab018. doi: 10.1093/nc/niab018. eCollection 2021.

Abstract

Meta-awareness refers to the capacity to explicitly notice the current content of consciousness and has been identified as a key component for the successful control of cognitive states, such as the deliberate direction of attention. This paper proposes a formal model of meta-awareness and attentional control using hierarchical active inference. To do so, we cast mental action as policy selection over higher-level cognitive states and add a further hierarchical level to model meta-awareness states that modulate the expected confidence (precision) in the mapping between observations and hidden cognitive states. We simulate the example of mind-wandering and its regulation during a task involving sustained selective attention on a perceptual object. This provides a computational case study for an inferential architecture that is apt to enable the emergence of these central components of human phenomenology, namely, the ability to access and control cognitive states. We propose that this approach can be generalized to other cognitive states, and hence, this paper provides the first steps towards the development of a computational phenomenology of mental action and more broadly of our ability to monitor and control our own cognitive states. Future steps of this work will focus on fitting the model with qualitative, behavioural, and neural data.

摘要

元认知指的是明确注意到意识当前内容的能力,并且已被确定为成功控制认知状态(如注意力的有意引导)的关键组成部分。本文提出了一种使用分层主动推理的元认知和注意力控制的形式模型。为此,我们将心理行动视为对更高层次认知状态的策略选择,并添加了一个更高的层次来对元认知状态进行建模,这些状态调节观察与隐藏认知状态之间映射的预期置信度(精度)。我们模拟了在一项涉及对感知对象持续选择性注意的任务中走神及其调节的示例。这为一种推理架构提供了一个计算案例研究,该架构易于促成人类现象学的这些核心组成部分的出现,即访问和控制认知状态的能力。我们提出这种方法可以推广到其他认知状态,因此,本文朝着发展心理行动的计算现象学以及更广泛地发展我们监测和控制自己认知状态的能力迈出了第一步。这项工作的未来步骤将集中于使模型与定性、行为和神经数据相拟合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df5e/8396119/3f6fe4ce944c/niab018f10.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验