Suppr超能文献

开发和测试基于人工智能的语音生物标志物模型以检测社区居住成年人的认知障碍:日本的一项横断面研究

Developing and testing AI-based voice biomarker models to detect cognitive impairment among community dwelling adults: a cross-sectional study in Japan.

作者信息

Kiyoshige Eri, Ogata Soshiro, Kwon Namhee, Nakaoku Yuriko, Hayashi Chisato, Blaylock Nate, Brueckner Raymond, Subramanian Vinod, Joseph OConnell Henry, Yoshikawa Yusuke, Teramoto Kanako, Nakatsuka Kiyomasa, Saito Satoshi, Ihara Masafumi, Takegami Misa, Nishimura Kunihiro

机构信息

Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Centre, 6-1 Kishibe-Simmachi, Suita, Osaka, 564-8565, Japan.

Canary Speech, Inc., 1800 Novell Place, Suite H51, Provo, UT, 84606, USA.

出版信息

Lancet Reg Health West Pac. 2025 Jun 12;59:101598. doi: 10.1016/j.lanwpc.2025.101598. eCollection 2025 Jun.

Abstract

BACKGROUND

Voice is a potential biomarker of cognitive impairment because mild cognitive impairment (MCI) can cause changes in speech patterns and tempo. Artificial intelligence (AI) can deliver voice biomarkers as prediction features, leading to a timely, noninvasive, and cost-effective detection of cognitive impairment. This study aimed to develop and test prediction models utilizing voice biomarkers to detect cognitive impairment, which AI derived from voice data of unstructured conversations in community-dwelling adults in Japan.

METHODS

This observational study with a cross-sectional design, included 1461 community-dwelling adults. The outcome was cognitive impairment assessed by the Memory Performance Index score from the MCI screen. Voice data was collected from 3-min open-question interviews and extracted voice biomarkers based on acoustic and prosodic features as a 512-dimensional vector of individual voice information using the voice generator, Wav2Vec2. Other considerable predictors were age, sex, and education. We developed cognitive impairment prediction models by applying the extreme gradient boosting decision tree algorithm and a deep neural network model using 979 participants. Prediction performances were tested by area under the curves (AUCs) in 482 participants who were not used for model development.

FINDINGS

We had 967 women (66·2%), 526 cognitive impairment (36·0%) participants with mean (standard deviation) age and education years of 79·5 (6·3) years old and 11·6 (2·2) years, respectively. The inclusion of voice biomarkers significantly improved AUCs (95% confidence intervals), from 0·80 (0·76, 0·84) to 0·88 (0·84, 0·91) for the age sex model and from 0·78 (0·73, 0·82) to 0·89 (0·86, 0·92) for the age sex and education model (p < 0·0001 for both comparisons by DeLong test).

INTERPRETATION

Our prediction models for cognitive impairment using voice biomarkers can provide significantly timesaving MCI screening with high prediction performances (AUC = 0·89). Voice biomarkers significantly contributed to improving prediction performance.

FUNDING

Small Business Innovation Research (SBIR Phase 3 Fund), the Intramural Research Fund of Cardiovascular Diseases of the National Cerebral and Cardiovascular Center, and JSPS KAKENHI.

摘要

背景

语音是认知障碍的一种潜在生物标志物,因为轻度认知障碍(MCI)会导致语音模式和节奏的变化。人工智能(AI)可以将语音生物标志物作为预测特征,从而实现对认知障碍的及时、非侵入性且具有成本效益的检测。本研究旨在开发并测试利用语音生物标志物检测认知障碍的预测模型,该模型由AI从日本社区居住成年人的非结构化对话语音数据中得出。

方法

这项采用横断面设计的观察性研究纳入了1461名社区居住成年人。结局指标是通过MCI筛查中的记忆表现指数评分评估的认知障碍。语音数据从3分钟的开放式问题访谈中收集,并使用语音生成器Wav2Vec2基于声学和韵律特征提取语音生物标志物,作为个体语音信息的512维向量。其他重要的预测因素包括年龄、性别和教育程度。我们使用979名参与者,通过应用极端梯度提升决策树算法和深度神经网络模型开发了认知障碍预测模型。在未用于模型开发的482名参与者中,通过曲线下面积(AUC)测试预测性能。

结果

我们有967名女性(66.2%),526名认知障碍参与者(36.0%),其平均(标准差)年龄和受教育年限分别为79.5(6.3)岁和11.6(2.2)年。纳入语音生物标志物后,年龄性别模型的AUC(95%置信区间)从0.80(0.76,0.84)显著提高到0.88(0.84,0.91),年龄性别和教育模型的AUC从0.78(0.73,0.82)显著提高到0.89(0.86,0.92)(德龙检验的两项比较p均<0.0001)。

解读

我们使用语音生物标志物的认知障碍预测模型可以显著节省时间,进行具有高预测性能(AUC = 0.89)的MCI筛查。语音生物标志物对提高预测性能有显著贡献。

资助

小企业创新研究(SBIR第3阶段基金)、国立脑与心血管中心心血管疾病内部研究基金以及日本学术振兴会科研资助金。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1303/12266181/9e13192c72bf/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验