Li Yadong, Dang Yifei, Jin Meng, Hu Yuan, Cao Kecheng
Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
RSC Adv. 2025 Jul 16;15(31):25250-25255. doi: 10.1039/d5ra03434e. eCollection 2025 Jul 15.
The adsorption behavior of uranium on carbon substrates proves crucial for nuclear energy, catalytic and environmental technologies. This study reveals distinct uranium immobilization mechanisms across graphene, amorphous carbon, and nanodiamonds by aberration-corrected TEM. While amorphous carbon and nanodiamonds effectively anchor atomic uranium through uranyl ion adsorption, pristine graphene exhibits inherent resistance to uranyl binding. Graphene captures dissociated uranium atoms from amorphous carbon only under electron beam irradiation. This study bridges critical knowledge gaps in uranium-carbon interactions, offering a foundation for designing carbon-supported catalysts and uranyl adsorption materials.
铀在碳基底上的吸附行为对核能、催化和环境技术至关重要。本研究通过像差校正透射电子显微镜揭示了石墨烯、无定形碳和纳米金刚石中不同的铀固定机制。虽然无定形碳和纳米金刚石通过铀酰离子吸附有效地锚定了原子铀,但原始石墨烯对铀酰结合表现出固有抗性。石墨烯仅在电子束照射下从无定形碳中捕获解离的铀原子。本研究弥补了铀 - 碳相互作用方面的关键知识空白,为设计碳负载催化剂和铀酰吸附材料奠定了基础。