Wang Lixiao, Sörensen Katrine, Coates Philip J, Gu Xiaolian, Sgaramella Nicola, Barre Mustafa Magan, Nylander Karin
Department of Medical Biosciences, Building 6M, Umeå University, Umeå, Sweden.
Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.
J Pathol Clin Res. 2025 Jul;11(4):e70036. doi: 10.1002/2056-4538.70036.
Squamous cell carcinoma of the oral tongue (SCCOT) represents an aggressive malignancy characterized by high metastatic potential and significant heterogeneity in its tumor microenvironment. The tumor-stroma ratio (TSR) has emerged as a prognostic biomarker, with higher stromal content frequently correlating with worse survival outcomes. Traditional approaches using the standard 50% TSR cutoff may not be optimal for SCCOT, and visual TSR estimation introduces variability during TSR region annotation. This study aimed to develop and validate a dedicated TSR estimation model for SCCOT by incorporating representative TSR regions from the invasive tumor front of whole slide images and to determine the optimal TSR threshold for prognostic stratification. Using hematoxylin and eosin-stained images from The Cancer Genome Atlas as a discovery cohort and whole slide images from Norrland's University Hospital Umea, Sweden (NUS) as a validation cohort, we developed a computational model to estimate TSR. The model demonstrated a high correlation with pathologist-based TSR estimation in both discovery (R = 0.848, p < 0.01) and validation (R = 0.783, p < 0.01) cohorts. The optimal 55% cutoff identified by the model improved prognostic accuracy over the traditional 50% threshold, with patients having high stroma within the tumor invasive front showing worse overall (log-rank p = 0.006) and disease-specific (log-rank p = 0.016) survival. Our computational TSR model for SCCOT demonstrates that automated TSR estimation enhances prognostic accuracy at an optimal cutoff of 55%, contributing to more precise risk stratification and potentially enabling personalized treatment strategies in SCCOT management.
口腔舌鳞状细胞癌(SCCOT)是一种侵袭性恶性肿瘤,其特征是具有高转移潜能且肿瘤微环境存在显著异质性。肿瘤-基质比(TSR)已成为一种预后生物标志物,较高的基质含量通常与较差的生存结果相关。使用标准50%TSR临界值的传统方法可能对SCCOT并非最佳,并且视觉TSR估计在TSR区域标注过程中会引入变异性。本研究旨在通过纳入来自全切片图像侵袭性肿瘤前沿的代表性TSR区域,开发并验证一种针对SCCOT的专用TSR估计模型,并确定用于预后分层的最佳TSR阈值。使用来自癌症基因组图谱的苏木精和伊红染色图像作为发现队列,以及来自瑞典于默奥诺尔兰大学医院(NUS)的全切片图像作为验证队列,我们开发了一种计算模型来估计TSR。该模型在发现队列(R = 0.848,p < 0.01)和验证队列(R = 0.783,p < 0.01)中均与基于病理学家的TSR估计具有高度相关性。该模型确定的最佳55%临界值比传统的50%阈值提高了预后准确性,肿瘤侵袭前沿基质含量高的患者总体生存率(对数秩检验p = 0.006)和疾病特异性生存率(对数秩检验p = 0.016)较差。我们针对SCCOT的计算TSR模型表明,自动TSR估计在最佳临界值55%时可提高预后准确性,有助于更精确的风险分层,并可能在SCCOT管理中实现个性化治疗策略。