Chandelon Kilian, Pitout Alice, Souchaud Mathieu, Desternes Julie, Margue Gaëlle, Peyras Julien, Bourdel Nicolas, Bernhard Jean-Christophe, Bartoli Adrien
EnCoV, Institut Pascal, UMR6602 CNRS, UCA, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.
SURGAR - Surgical Augmented Reality, Clermont-Ferrand, France.
Int J Comput Assist Radiol Surg. 2025 Jul 17. doi: 10.1007/s11548-025-03473-3.
Augmented Reality in Minimally Invasive Surgery has made tremendous progress in organs including the liver and the uterus. The core problem of Augmented Reality is registration, where a preoperative patient's geometric digital twin must be aligned with the image of the surgical camera. The case of the kidney is yet unresolved, owing to the absence of anatomical landmarks visible in both the patient's digital twin and the surgical images.
We propose a landmark-free approach to registration, which is particularly well-adapted to the kidney. The approach involves a generic kidney model and an end-to-end neural network, which we train with a proposed dataset to regress the registration directly from a surgical RGB image.
Experimental evaluation across four clinical cases demonstrates strong concordance with expert-labelled registration, despite anatomical and motion variability. The proposed method achieved an average tumour contour alignment error of mm in ms.
This landmark-free registration approach meets the accuracy, speed and resource constraints required in clinical practice, making it a promising tool for Augmented Reality-Assisted Partial Nephrectomy.
微创外科手术中的增强现实技术在肝脏和子宫等器官的手术中取得了巨大进展。增强现实的核心问题是配准,即术前患者的几何数字孪生模型必须与手术摄像头的图像对齐。由于在患者数字孪生模型和手术图像中都没有可见的解剖标志,肾脏手术的配准问题尚未得到解决。
我们提出了一种无标志的配准方法,该方法特别适用于肾脏手术。该方法涉及一个通用肾脏模型和一个端到端神经网络,我们使用一个提议的数据集对其进行训练,以直接从手术RGB图像中回归配准。
对四个临床病例的实验评估表明,尽管存在解剖结构和运动的变异性,但该方法与专家标记的配准结果高度一致。所提出的方法在毫秒内实现了平均肿瘤轮廓对齐误差为毫米。
这种无标志配准方法满足了临床实践中所需的准确性、速度和资源限制,使其成为增强现实辅助部分肾切除术的一个有前途的工具。