文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于网络的人工智能预测模型:机器学习技术在中风患者抑郁症评估中的可解释性应用。

Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of depression in stroke patients.

作者信息

Zuo Wenwei, Yang Xuelian

机构信息

University of Shanghai for Science and Technology, No.516, Jungong Road, Yangpu Area, Shanghai, 200093, China.

Department of Neurology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, Shanghai, 200135, China.

出版信息

BMC Geriatr. 2025 Mar 22;25(1):193. doi: 10.1186/s12877-025-05837-5.


DOI:10.1186/s12877-025-05837-5
PMID:40121413
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11929363/
Abstract

BACKGROUND: Depression is a common complication after a stroke that may lead to increased disability and decreased quality of life. The objective of this study was to develop and validate an interpretable predictive model to assess the risk of depression in stroke patients using machine learning (ML) methods. METHODS: This study included 1143 stroke patients from the NHANES database between 2005 and 2020. First, risk factors for depression in stroke patients were determined by univariate and multivariate logistic regression analysis. Next, five machine learning algorithms were used to construct predictive models, and several evaluation metrics (including area under the curve (AUC)) were used to compare the predictive performance of the models. In addition, the SHAP (Shapley Additive Explanations) method was used to rank the importance of features and to interpret the final model. RESULTS: We screened seven features to construct a predictive model. Among the 5 machine learning models, the XGBoost (extreme gradient boosting) model showed the best discriminative ability, with an AUC of the ROC (receiver operating characteristic curve) in the test set of 0.746 and an accuracy of 0.834. In addition, the prediction results of the XGBoost model were interpreted in detail using the SHAP algorithm. We also developed a web-based calculator that provides a convenient tool for predicting the risk of depression in stroke patients at the following link: https://prediction-model-for-depression.streamlit.app . CONCLUSIONS: Our interpretable machine learning model serves as an auxiliary tool for clinical judgment, aimed at early and effective identification of depression risk in stroke patients.

摘要

背景:抑郁症是中风后的常见并发症,可能导致残疾增加和生活质量下降。本研究的目的是开发并验证一种可解释的预测模型,使用机器学习(ML)方法评估中风患者患抑郁症的风险。 方法:本研究纳入了2005年至2020年间来自美国国家健康与营养检查调查(NHANES)数据库的1143名中风患者。首先,通过单因素和多因素逻辑回归分析确定中风患者抑郁症的危险因素。接下来,使用五种机器学习算法构建预测模型,并使用几种评估指标(包括曲线下面积(AUC))比较模型的预测性能。此外,使用SHAP(Shapley加性解释)方法对特征的重要性进行排名并解释最终模型。 结果:我们筛选出七个特征来构建预测模型。在五个机器学习模型中,XGBoost(极端梯度提升)模型表现出最佳的判别能力,测试集中受试者工作特征曲线(ROC)的AUC为0.746,准确率为0.834。此外,使用SHAP算法详细解释了XGBoost模型的预测结果。我们还开发了一个基于网络的计算器,通过以下链接为预测中风患者患抑郁症的风险提供了一个便捷工具:https://prediction-model-for-depression.streamlit.app 。 结论:我们的可解释机器学习模型可作为临床判断的辅助工具,旨在早期有效识别中风患者的抑郁症风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b4f/11929363/190a8a79e349/12877_2025_5837_Figd_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b4f/11929363/de26bdd3f41a/12877_2025_5837_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b4f/11929363/036cf9c8891d/12877_2025_5837_Figb_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b4f/11929363/f0176868a9e1/12877_2025_5837_Figc_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b4f/11929363/190a8a79e349/12877_2025_5837_Figd_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b4f/11929363/de26bdd3f41a/12877_2025_5837_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b4f/11929363/036cf9c8891d/12877_2025_5837_Figb_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b4f/11929363/f0176868a9e1/12877_2025_5837_Figc_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b4f/11929363/190a8a79e349/12877_2025_5837_Figd_HTML.jpg

相似文献

[1]
Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of depression in stroke patients.

BMC Geriatr. 2025-3-22

[2]
Auxiliary identification of depression patients using interpretable machine learning models based on heart rate variability: a retrospective study.

BMC Psychiatry. 2024-12-18

[3]
Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation.

Front Neurol. 2023-8-8

[4]
Development and validation of an interpretable machine learning model for predicting in-hospital mortality for ischemic stroke patients in ICU.

Int J Med Inform. 2025-6

[5]
Predicting stroke severity of patients using interpretable machine learning algorithms.

Eur J Med Res. 2024-11-14

[6]
Explainable Machine Learning Model for Predicting Persistent Sepsis-Associated Acute Kidney Injury: Development and Validation Study.

J Med Internet Res. 2025-4-28

[7]
Development and validation of a prediction model for coronary heart disease risk in depressed patients aged 20 years and older using machine learning algorithms.

Front Cardiovasc Med. 2025-1-9

[8]
An artificial intelligence application to predict prolonged dependence on mechanical ventilation among patients with critical orthopaedic trauma: an establishment and validation study.

BMC Musculoskelet Disord. 2024-12-30

[9]
Leveraging machine learning for enhanced and interpretable risk prediction of venous thromboembolism in acute ischemic stroke care.

PLoS One. 2025-3-18

[10]
Application and interpretation of machine learning models in predicting the risk of severe obstructive sleep apnea in adults.

BMC Med Inform Decis Mak. 2023-10-19

引用本文的文献

[1]
Explainable machine learning-driven models for predicting Parkinson's disease and its prognosis: obesity patterns associations and models development using NHANES 1999-2018 data.

Lipids Health Dis. 2025-7-17

[2]
Application of machine learning algorithms in osteoporosis analysis based on cardiovascular health assessed by life's essential 8: a cross-sectional study.

J Health Popul Nutr. 2025-5-29

本文引用的文献

[1]
Translational Connectomics: overview of machine learning in macroscale Connectomics for clinical insights.

BMC Neurol. 2024-9-28

[2]
Association between post-stroke depression and functional outcomes: A systematic review.

PLoS One. 2024

[3]
Association between socioeconomic status and post-stroke depression in middle-aged and older adults: results from the China health and retirement longitudinal study.

BMC Public Health. 2024-4-11

[4]
Effect of exercise for depression: systematic review and network meta-analysis of randomised controlled trials.

BMJ. 2024-2-14

[5]
Effects of home-based exercise interventions on post-stroke depression: A systematic review and network meta-analysis.

Int J Nurs Stud. 2024-4

[6]
Identification and validation of an explainable prediction model of acute kidney injury with prognostic implications in critically ill children: a prospective multicenter cohort study.

EClinicalMedicine. 2024-1-5

[7]
Weekend warrior physical activity pattern is associated with lower depression risk: Findings from NHANES 2007-2018.

Gen Hosp Psychiatry. 2023

[8]
Predicting new-onset post-stroke depression from real-world data using machine learning algorithm.

Front Psychiatry. 2023-6-19

[9]
Association between obstructive sleep apnea and risk for post-stroke anxiety: A Chinese hospital-based study in noncardiogenic ischemic stroke patients.

Sleep Med. 2023-7

[10]
Use of machine learning to identify risk factors for coronary artery disease.

PLoS One. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索