Vecchietti Luiz Felipe, Wijaya Bryan Nathanael, Armanuly Azamat, Hangeldiyev Begench, Jung Hyunkyu, Lee Sooyeon, Cha Meeyoung, Kim Ho Min
Max Planck Institute for Security and Privacy (MPI-SP), Universitätsstraße 140, Bochum, Germany.
School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
MAbs. 2025 Dec;17(1):2528902. doi: 10.1080/19420862.2025.2528902. Epub 2025 Jul 18.
Antibodies play a crucial role in our immune system. Their ability to bind to and neutralize pathogens opens opportunities to develop antibodies for therapeutic and diagnostic use. Computational methods capable of designing antibodies for a target antigen can revolutionize drug discovery, reducing the time and cost required for drug development. Artificial intelligence (AI) methods have recently achieved remarkable advancements in the design of protein sequences and structures, including the ability to generate scaffolds for a given motif and binders for a specific target. These generative methods have been applied to antigen-conditioned antibody design, with experimental binding confirmed for de novo-designed antibodies. This review surveys current AI methods used in antibody development, focusing on those for antigen-conditioned antibody design. The results obtained by AI-based methodologies in antibody and protein research suggest a promising direction for generating de novo binders for various target antigens.
抗体在我们的免疫系统中发挥着至关重要的作用。它们结合并中和病原体的能力为开发用于治疗和诊断的抗体提供了机会。能够针对目标抗原设计抗体的计算方法可以彻底改变药物发现过程,减少药物开发所需的时间和成本。人工智能(AI)方法最近在蛋白质序列和结构设计方面取得了显著进展,包括能够为给定基序生成支架以及为特定靶标生成结合剂。这些生成方法已应用于抗原条件抗体设计,并且从头设计的抗体已通过实验证实具有结合能力。本综述调查了目前在抗体开发中使用的人工智能方法,重点关注那些用于抗原条件抗体设计的方法。基于人工智能的方法在抗体和蛋白质研究中获得的结果为生成针对各种靶标抗原的从头结合剂指明了一个有前景的方向。