Suppr超能文献

评估接受派姆单抗治疗的非小细胞肺癌转移患者中人工智能驱动的数字症状监测的可行性:一项德国单臂观察性试点研究。

Feasibility of evaluating AI-enabled digital symptom monitoring in metastatic patients with NSCLC receiving pembrolizumab therapy: A German single-arm observational pilot study.

作者信息

Santorelli Melissa L, Schmalz Oliver, Hoiczyk Mathias, Heigener David, Schulte Clemens, Knott Markus, Hoffknecht Petra, Vainio Joonas, Burke Thomas, Norquist Josephine M, Riehl Sabine, Hildner Alexander, Barthuber Lisa, Bohnet Sabine

机构信息

Merck & Co., Inc., Rahway, NJ, USA.

HELIOS Universitätsklinikum Wuppertal, Klinik für Hämatologie, Onkologie und Palliativmedizin, Wuppertal, Germany.

出版信息

Digit Health. 2025 Jul 15;11:20552076251348584. doi: 10.1177/20552076251348584. eCollection 2025 Jan-Dec.

Abstract

INTRODUCTION

Close symptom monitoring can benefit patients with metastatic nonsmall cell lung cancer (mNSCLC) receiving first-line therapy. Remote patient monitoring technologies, like the artificial intelligence (AI)-enabled Kaiku Health platform that allows oncology patients to report their health status in real-time to healthcare providers, may enhance patients' treatment experience.

METHODOLOGY

The lung artificial intelligence-enabled digital solution pilot study ("Lung AID") assessed the feasibility of future studies on Kaiku Health in patients with mNSCLC receiving first-line pembrolizumab in Germany. Patient engagement with Kaiku Health and practicality of collecting patient-reported outcomes (PROs) via the separate Lung AID EDC system were assessed by platform access rates. Kaiku Health access required one login, while Lung AID EDC access required submission of ≥1 PRO questionnaire. Post hoc analyses explored access by site experience with Kaiku Health.

RESULTS

Over a 17-month enrollment period, 47 of 100 planned patients were enrolled in the study. Kaiku Health was accessed by 85.1% of patients, with higher engagement at experienced sites (96.2%). Only 38.3% accessed the Lung AID EDC system; 31.9% used both systems.

DISCUSSION

High Kaiku Health access rates imply patient interest in remote digital monitoring for mNSCLC. However, recruitment challenges and use of a separate system to collect PRO data demonstrated difficulties in assessing the feasibility of these technologies in real-world settings. Our results highlight the need for streamlined patient monitoring tools and enhanced site and patient engagement strategies.

CONCLUSION

While definitive conclusions on future studies cannot be drawn, the study offers key insights into challenges that should be considered in future research.

摘要

引言

密切的症状监测对接受一线治疗的转移性非小细胞肺癌(mNSCLC)患者有益。远程患者监测技术,如启用人工智能(AI)的Kaiku Health平台,可让肿瘤患者向医疗服务提供者实时报告其健康状况,这可能会提升患者的治疗体验。

方法

启用肺部人工智能的数字解决方案试点研究(“Lung AID”)评估了未来在德国对接受一线派姆单抗治疗的mNSCLC患者使用Kaiku Health进行研究的可行性。通过平台访问率评估患者对Kaiku Health的参与度以及通过单独的Lung AID电子数据采集(EDC)系统收集患者报告结局(PROs)的实用性。访问Kaiku Health需要一次登录,而访问Lung AID EDC需要提交≥1份PRO问卷。事后分析探讨了根据各站点使用Kaiku Health的经验情况的访问情况。

结果

在为期17个月的入组期间,100名计划入组患者中有47名入组该研究。85.1%的患者访问了Kaiku Health,在经验丰富的站点参与度更高(96.2%)。只有38.3%的患者访问了Lung AID EDC系统;31.9%的患者同时使用了这两个系统。

讨论

Kaiku Health的高访问率表明患者对mNSCLC的远程数字监测感兴趣。然而,招募方面的挑战以及使用单独系统收集PRO数据表明,在现实环境中评估这些技术的可行性存在困难。我们的结果凸显了对简化患者监测工具以及加强站点和患者参与策略的需求。

结论

虽然无法得出关于未来研究的确定性结论,但该研究为未来研究应考虑的挑战提供了关键见解。

相似文献

3
Telehealth interventions: remote monitoring and consultations for people with chronic obstructive pulmonary disease (COPD).
Cochrane Database Syst Rev. 2021 Jul 20;7(7):CD013196. doi: 10.1002/14651858.CD013196.pub2.
4
Computer and mobile technology interventions for self-management in chronic obstructive pulmonary disease.
Cochrane Database Syst Rev. 2017 May 23;5(5):CD011425. doi: 10.1002/14651858.CD011425.pub2.
5
How to Implement Digital Clinical Consultations in UK Maternity Care: the ARM@DA Realist Review.
Health Soc Care Deliv Res. 2025 May 21:1-77. doi: 10.3310/WQFV7425.
6
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
7
Monitoring strategies for clinical intervention studies.
Cochrane Database Syst Rev. 2021 Dec 8;12(12):MR000051. doi: 10.1002/14651858.MR000051.pub2.
8
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
10
Gaps in Artificial Intelligence Research for Rural Health in the United States: A Scoping Review.
medRxiv. 2025 Jun 27:2025.06.26.25330361. doi: 10.1101/2025.06.26.25330361.

本文引用的文献

1
Feasibility and Usability of EnergyPoints: A Mobile Health App to Guide Acupressure Use for Cancer Symptom Management.
Integr Cancer Ther. 2024 Jan-Dec;23:15347354231223965. doi: 10.1177/15347354231223965.
3
Recent advances in artificial intelligence applications for supportive and palliative care in cancer patients.
Curr Opin Support Palliat Care. 2023 Jun 1;17(2):125-134. doi: 10.1097/SPC.0000000000000645. Epub 2023 Apr 6.
5
Maximizing Engagement in Mobile Health Studies: Lessons Learned and Future Directions.
Rheum Dis Clin North Am. 2019 May;45(2):159-172. doi: 10.1016/j.rdc.2019.01.004. Epub 2019 Mar 8.
6
Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer.
N Engl J Med. 2018 Nov 22;379(21):2040-2051. doi: 10.1056/NEJMoa1810865. Epub 2018 Sep 25.
8
Implementation of Patient-Reported Outcomes in Routine Medical Care.
Am Soc Clin Oncol Educ Book. 2018 May 23;38:122-134. doi: 10.1200/EDBK_200383.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验